This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zeo2 | |- ( N e. ZZ -> ( ( N / 2 ) e. ZZ <-> -. ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 2 | peano2cn | |- ( N e. CC -> ( N + 1 ) e. CC ) |
|
| 3 | 1 2 | syl | |- ( N e. ZZ -> ( N + 1 ) e. CC ) |
| 4 | 2cnd | |- ( N e. ZZ -> 2 e. CC ) |
|
| 5 | 2ne0 | |- 2 =/= 0 |
|
| 6 | 5 | a1i | |- ( N e. ZZ -> 2 =/= 0 ) |
| 7 | 3 4 6 | divcan2d | |- ( N e. ZZ -> ( 2 x. ( ( N + 1 ) / 2 ) ) = ( N + 1 ) ) |
| 8 | 1 4 6 | divcan2d | |- ( N e. ZZ -> ( 2 x. ( N / 2 ) ) = N ) |
| 9 | 8 | oveq1d | |- ( N e. ZZ -> ( ( 2 x. ( N / 2 ) ) + 1 ) = ( N + 1 ) ) |
| 10 | 7 9 | eqtr4d | |- ( N e. ZZ -> ( 2 x. ( ( N + 1 ) / 2 ) ) = ( ( 2 x. ( N / 2 ) ) + 1 ) ) |
| 11 | zneo | |- ( ( ( ( N + 1 ) / 2 ) e. ZZ /\ ( N / 2 ) e. ZZ ) -> ( 2 x. ( ( N + 1 ) / 2 ) ) =/= ( ( 2 x. ( N / 2 ) ) + 1 ) ) |
|
| 12 | 11 | expcom | |- ( ( N / 2 ) e. ZZ -> ( ( ( N + 1 ) / 2 ) e. ZZ -> ( 2 x. ( ( N + 1 ) / 2 ) ) =/= ( ( 2 x. ( N / 2 ) ) + 1 ) ) ) |
| 13 | 12 | necon2bd | |- ( ( N / 2 ) e. ZZ -> ( ( 2 x. ( ( N + 1 ) / 2 ) ) = ( ( 2 x. ( N / 2 ) ) + 1 ) -> -. ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 14 | 10 13 | syl5com | |- ( N e. ZZ -> ( ( N / 2 ) e. ZZ -> -. ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 15 | zeo | |- ( N e. ZZ -> ( ( N / 2 ) e. ZZ \/ ( ( N + 1 ) / 2 ) e. ZZ ) ) |
|
| 16 | 15 | ord | |- ( N e. ZZ -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 17 | 16 | con1d | |- ( N e. ZZ -> ( -. ( ( N + 1 ) / 2 ) e. ZZ -> ( N / 2 ) e. ZZ ) ) |
| 18 | 14 17 | impbid | |- ( N e. ZZ -> ( ( N / 2 ) e. ZZ <-> -. ( ( N + 1 ) / 2 ) e. ZZ ) ) |