This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for xrsdsreclb . (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xrsds.d | |- D = ( dist ` RR*s ) |
|
| Assertion | xrsdsreclblem | |- ( ( ( A e. RR* /\ B e. RR* /\ A =/= B ) /\ A <_ B ) -> ( ( B +e -e A ) e. RR -> ( A e. RR /\ B e. RR ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrsds.d | |- D = ( dist ` RR*s ) |
|
| 2 | necom | |- ( A =/= B <-> B =/= A ) |
|
| 3 | xrleltne | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( A < B <-> B =/= A ) ) |
|
| 4 | mnfxr | |- -oo e. RR* |
|
| 5 | 4 | a1i | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> -oo e. RR* ) |
| 6 | simpl1 | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> A e. RR* ) |
|
| 7 | simpl2 | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> B e. RR* ) |
|
| 8 | pnfnre | |- +oo e/ RR |
|
| 9 | 8 | neli | |- -. +oo e. RR |
| 10 | mnfle | |- ( A e. RR* -> -oo <_ A ) |
|
| 11 | 6 10 | syl | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> -oo <_ A ) |
| 12 | simpl3 | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> A < B ) |
|
| 13 | 5 6 7 11 12 | xrlelttrd | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> -oo < B ) |
| 14 | xrltne | |- ( ( -oo e. RR* /\ B e. RR* /\ -oo < B ) -> B =/= -oo ) |
|
| 15 | 5 7 13 14 | syl3anc | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> B =/= -oo ) |
| 16 | xaddpnf1 | |- ( ( B e. RR* /\ B =/= -oo ) -> ( B +e +oo ) = +oo ) |
|
| 17 | 7 15 16 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> ( B +e +oo ) = +oo ) |
| 18 | 17 | eleq1d | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> ( ( B +e +oo ) e. RR <-> +oo e. RR ) ) |
| 19 | 9 18 | mtbiri | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> -. ( B +e +oo ) e. RR ) |
| 20 | ngtmnft | |- ( A e. RR* -> ( A = -oo <-> -. -oo < A ) ) |
|
| 21 | 6 20 | syl | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> ( A = -oo <-> -. -oo < A ) ) |
| 22 | simpr | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> ( B +e -e A ) e. RR ) |
|
| 23 | xnegeq | |- ( A = -oo -> -e A = -e -oo ) |
|
| 24 | xnegmnf | |- -e -oo = +oo |
|
| 25 | 23 24 | eqtrdi | |- ( A = -oo -> -e A = +oo ) |
| 26 | 25 | oveq2d | |- ( A = -oo -> ( B +e -e A ) = ( B +e +oo ) ) |
| 27 | 26 | eleq1d | |- ( A = -oo -> ( ( B +e -e A ) e. RR <-> ( B +e +oo ) e. RR ) ) |
| 28 | 22 27 | syl5ibcom | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> ( A = -oo -> ( B +e +oo ) e. RR ) ) |
| 29 | 21 28 | sylbird | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> ( -. -oo < A -> ( B +e +oo ) e. RR ) ) |
| 30 | 19 29 | mt3d | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> -oo < A ) |
| 31 | xrre2 | |- ( ( ( -oo e. RR* /\ A e. RR* /\ B e. RR* ) /\ ( -oo < A /\ A < B ) ) -> A e. RR ) |
|
| 32 | 5 6 7 30 12 31 | syl32anc | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> A e. RR ) |
| 33 | pnfxr | |- +oo e. RR* |
|
| 34 | 33 | a1i | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> +oo e. RR* ) |
| 35 | 6 | xnegcld | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> -e A e. RR* ) |
| 36 | xnegpnf | |- -e +oo = -oo |
|
| 37 | pnfge | |- ( B e. RR* -> B <_ +oo ) |
|
| 38 | 7 37 | syl | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> B <_ +oo ) |
| 39 | 6 7 34 12 38 | xrltletrd | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> A < +oo ) |
| 40 | xltnegi | |- ( ( A e. RR* /\ +oo e. RR* /\ A < +oo ) -> -e +oo < -e A ) |
|
| 41 | 6 34 39 40 | syl3anc | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> -e +oo < -e A ) |
| 42 | 36 41 | eqbrtrrid | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> -oo < -e A ) |
| 43 | xrltne | |- ( ( -oo e. RR* /\ -e A e. RR* /\ -oo < -e A ) -> -e A =/= -oo ) |
|
| 44 | 5 35 42 43 | syl3anc | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> -e A =/= -oo ) |
| 45 | xaddpnf2 | |- ( ( -e A e. RR* /\ -e A =/= -oo ) -> ( +oo +e -e A ) = +oo ) |
|
| 46 | 35 44 45 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> ( +oo +e -e A ) = +oo ) |
| 47 | 46 | eleq1d | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> ( ( +oo +e -e A ) e. RR <-> +oo e. RR ) ) |
| 48 | 9 47 | mtbiri | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> -. ( +oo +e -e A ) e. RR ) |
| 49 | nltpnft | |- ( B e. RR* -> ( B = +oo <-> -. B < +oo ) ) |
|
| 50 | 7 49 | syl | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> ( B = +oo <-> -. B < +oo ) ) |
| 51 | oveq1 | |- ( B = +oo -> ( B +e -e A ) = ( +oo +e -e A ) ) |
|
| 52 | 51 | eleq1d | |- ( B = +oo -> ( ( B +e -e A ) e. RR <-> ( +oo +e -e A ) e. RR ) ) |
| 53 | 22 52 | syl5ibcom | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> ( B = +oo -> ( +oo +e -e A ) e. RR ) ) |
| 54 | 50 53 | sylbird | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> ( -. B < +oo -> ( +oo +e -e A ) e. RR ) ) |
| 55 | 48 54 | mt3d | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> B < +oo ) |
| 56 | xrre2 | |- ( ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) /\ ( A < B /\ B < +oo ) ) -> B e. RR ) |
|
| 57 | 6 7 34 12 55 56 | syl32anc | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> B e. RR ) |
| 58 | 32 57 | jca | |- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> ( A e. RR /\ B e. RR ) ) |
| 59 | 58 | ex | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( B +e -e A ) e. RR -> ( A e. RR /\ B e. RR ) ) ) |
| 60 | 59 | 3expia | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> ( ( B +e -e A ) e. RR -> ( A e. RR /\ B e. RR ) ) ) ) |
| 61 | 60 | 3adant3 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( A < B -> ( ( B +e -e A ) e. RR -> ( A e. RR /\ B e. RR ) ) ) ) |
| 62 | 3 61 | sylbird | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( B =/= A -> ( ( B +e -e A ) e. RR -> ( A e. RR /\ B e. RR ) ) ) ) |
| 63 | 2 62 | biimtrid | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( A =/= B -> ( ( B +e -e A ) e. RR -> ( A e. RR /\ B e. RR ) ) ) ) |
| 64 | 63 | 3exp | |- ( A e. RR* -> ( B e. RR* -> ( A <_ B -> ( A =/= B -> ( ( B +e -e A ) e. RR -> ( A e. RR /\ B e. RR ) ) ) ) ) ) |
| 65 | 64 | com34 | |- ( A e. RR* -> ( B e. RR* -> ( A =/= B -> ( A <_ B -> ( ( B +e -e A ) e. RR -> ( A e. RR /\ B e. RR ) ) ) ) ) ) |
| 66 | 65 | 3imp1 | |- ( ( ( A e. RR* /\ B e. RR* /\ A =/= B ) /\ A <_ B ) -> ( ( B +e -e A ) e. RR -> ( A e. RR /\ B e. RR ) ) ) |