This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The metric of the extended real number structure is only real when both arguments are real. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xrsds.d | |- D = ( dist ` RR*s ) |
|
| Assertion | xrsdsreclb | |- ( ( A e. RR* /\ B e. RR* /\ A =/= B ) -> ( ( A D B ) e. RR <-> ( A e. RR /\ B e. RR ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrsds.d | |- D = ( dist ` RR*s ) |
|
| 2 | 1 | xrsdsval | |- ( ( A e. RR* /\ B e. RR* ) -> ( A D B ) = if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) ) |
| 3 | 2 | 3adant3 | |- ( ( A e. RR* /\ B e. RR* /\ A =/= B ) -> ( A D B ) = if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) ) |
| 4 | 3 | eleq1d | |- ( ( A e. RR* /\ B e. RR* /\ A =/= B ) -> ( ( A D B ) e. RR <-> if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) e. RR ) ) |
| 5 | eleq1 | |- ( ( B +e -e A ) = if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) -> ( ( B +e -e A ) e. RR <-> if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) e. RR ) ) |
|
| 6 | 5 | imbi1d | |- ( ( B +e -e A ) = if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) -> ( ( ( B +e -e A ) e. RR -> ( A e. RR /\ B e. RR ) ) <-> ( if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) e. RR -> ( A e. RR /\ B e. RR ) ) ) ) |
| 7 | eleq1 | |- ( ( A +e -e B ) = if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) -> ( ( A +e -e B ) e. RR <-> if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) e. RR ) ) |
|
| 8 | 7 | imbi1d | |- ( ( A +e -e B ) = if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) -> ( ( ( A +e -e B ) e. RR -> ( A e. RR /\ B e. RR ) ) <-> ( if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) e. RR -> ( A e. RR /\ B e. RR ) ) ) ) |
| 9 | 1 | xrsdsreclblem | |- ( ( ( A e. RR* /\ B e. RR* /\ A =/= B ) /\ A <_ B ) -> ( ( B +e -e A ) e. RR -> ( A e. RR /\ B e. RR ) ) ) |
| 10 | xrletri | |- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B \/ B <_ A ) ) |
|
| 11 | 10 | 3adant3 | |- ( ( A e. RR* /\ B e. RR* /\ A =/= B ) -> ( A <_ B \/ B <_ A ) ) |
| 12 | 11 | orcanai | |- ( ( ( A e. RR* /\ B e. RR* /\ A =/= B ) /\ -. A <_ B ) -> B <_ A ) |
| 13 | necom | |- ( A =/= B <-> B =/= A ) |
|
| 14 | 13 | 3anbi3i | |- ( ( A e. RR* /\ B e. RR* /\ A =/= B ) <-> ( A e. RR* /\ B e. RR* /\ B =/= A ) ) |
| 15 | 3ancoma | |- ( ( A e. RR* /\ B e. RR* /\ B =/= A ) <-> ( B e. RR* /\ A e. RR* /\ B =/= A ) ) |
|
| 16 | 14 15 | bitri | |- ( ( A e. RR* /\ B e. RR* /\ A =/= B ) <-> ( B e. RR* /\ A e. RR* /\ B =/= A ) ) |
| 17 | 1 | xrsdsreclblem | |- ( ( ( B e. RR* /\ A e. RR* /\ B =/= A ) /\ B <_ A ) -> ( ( A +e -e B ) e. RR -> ( B e. RR /\ A e. RR ) ) ) |
| 18 | 16 17 | sylanb | |- ( ( ( A e. RR* /\ B e. RR* /\ A =/= B ) /\ B <_ A ) -> ( ( A +e -e B ) e. RR -> ( B e. RR /\ A e. RR ) ) ) |
| 19 | ancom | |- ( ( B e. RR /\ A e. RR ) <-> ( A e. RR /\ B e. RR ) ) |
|
| 20 | 18 19 | imbitrdi | |- ( ( ( A e. RR* /\ B e. RR* /\ A =/= B ) /\ B <_ A ) -> ( ( A +e -e B ) e. RR -> ( A e. RR /\ B e. RR ) ) ) |
| 21 | 12 20 | syldan | |- ( ( ( A e. RR* /\ B e. RR* /\ A =/= B ) /\ -. A <_ B ) -> ( ( A +e -e B ) e. RR -> ( A e. RR /\ B e. RR ) ) ) |
| 22 | 6 8 9 21 | ifbothda | |- ( ( A e. RR* /\ B e. RR* /\ A =/= B ) -> ( if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) e. RR -> ( A e. RR /\ B e. RR ) ) ) |
| 23 | 4 22 | sylbid | |- ( ( A e. RR* /\ B e. RR* /\ A =/= B ) -> ( ( A D B ) e. RR -> ( A e. RR /\ B e. RR ) ) ) |
| 24 | 1 | xrsdsreval | |- ( ( A e. RR /\ B e. RR ) -> ( A D B ) = ( abs ` ( A - B ) ) ) |
| 25 | recn | |- ( A e. RR -> A e. CC ) |
|
| 26 | recn | |- ( B e. RR -> B e. CC ) |
|
| 27 | subcl | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
|
| 28 | 25 26 27 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( A - B ) e. CC ) |
| 29 | 28 | abscld | |- ( ( A e. RR /\ B e. RR ) -> ( abs ` ( A - B ) ) e. RR ) |
| 30 | 24 29 | eqeltrd | |- ( ( A e. RR /\ B e. RR ) -> ( A D B ) e. RR ) |
| 31 | 23 30 | impbid1 | |- ( ( A e. RR* /\ B e. RR* /\ A =/= B ) -> ( ( A D B ) e. RR <-> ( A e. RR /\ B e. RR ) ) ) |