This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for xpstopn . (Contributed by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpstps.t | |- T = ( R Xs. S ) |
|
| xpstopn.j | |- J = ( TopOpen ` R ) |
||
| xpstopn.k | |- K = ( TopOpen ` S ) |
||
| xpstopn.o | |- O = ( TopOpen ` T ) |
||
| xpstopnlem.x | |- X = ( Base ` R ) |
||
| xpstopnlem.y | |- Y = ( Base ` S ) |
||
| xpstopnlem.f | |- F = ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) |
||
| Assertion | xpstopnlem2 | |- ( ( R e. TopSp /\ S e. TopSp ) -> O = ( J tX K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpstps.t | |- T = ( R Xs. S ) |
|
| 2 | xpstopn.j | |- J = ( TopOpen ` R ) |
|
| 3 | xpstopn.k | |- K = ( TopOpen ` S ) |
|
| 4 | xpstopn.o | |- O = ( TopOpen ` T ) |
|
| 5 | xpstopnlem.x | |- X = ( Base ` R ) |
|
| 6 | xpstopnlem.y | |- Y = ( Base ` S ) |
|
| 7 | xpstopnlem.f | |- F = ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) |
|
| 8 | eqid | |- ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) = ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) |
|
| 9 | fvexd | |- ( ( R e. TopSp /\ S e. TopSp ) -> ( Scalar ` R ) e. _V ) |
|
| 10 | 2on | |- 2o e. On |
|
| 11 | 10 | a1i | |- ( ( R e. TopSp /\ S e. TopSp ) -> 2o e. On ) |
| 12 | fnpr2o | |- ( ( R e. TopSp /\ S e. TopSp ) -> { <. (/) , R >. , <. 1o , S >. } Fn 2o ) |
|
| 13 | eqid | |- ( TopOpen ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( TopOpen ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |
|
| 14 | 8 9 11 12 13 | prdstopn | |- ( ( R e. TopSp /\ S e. TopSp ) -> ( TopOpen ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( Xt_ ` ( TopOpen o. { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 15 | topnfn | |- TopOpen Fn _V |
|
| 16 | dffn2 | |- ( { <. (/) , R >. , <. 1o , S >. } Fn 2o <-> { <. (/) , R >. , <. 1o , S >. } : 2o --> _V ) |
|
| 17 | 12 16 | sylib | |- ( ( R e. TopSp /\ S e. TopSp ) -> { <. (/) , R >. , <. 1o , S >. } : 2o --> _V ) |
| 18 | fnfco | |- ( ( TopOpen Fn _V /\ { <. (/) , R >. , <. 1o , S >. } : 2o --> _V ) -> ( TopOpen o. { <. (/) , R >. , <. 1o , S >. } ) Fn 2o ) |
|
| 19 | 15 17 18 | sylancr | |- ( ( R e. TopSp /\ S e. TopSp ) -> ( TopOpen o. { <. (/) , R >. , <. 1o , S >. } ) Fn 2o ) |
| 20 | xpsfeq | |- ( ( TopOpen o. { <. (/) , R >. , <. 1o , S >. } ) Fn 2o -> { <. (/) , ( ( TopOpen o. { <. (/) , R >. , <. 1o , S >. } ) ` (/) ) >. , <. 1o , ( ( TopOpen o. { <. (/) , R >. , <. 1o , S >. } ) ` 1o ) >. } = ( TopOpen o. { <. (/) , R >. , <. 1o , S >. } ) ) |
|
| 21 | 19 20 | syl | |- ( ( R e. TopSp /\ S e. TopSp ) -> { <. (/) , ( ( TopOpen o. { <. (/) , R >. , <. 1o , S >. } ) ` (/) ) >. , <. 1o , ( ( TopOpen o. { <. (/) , R >. , <. 1o , S >. } ) ` 1o ) >. } = ( TopOpen o. { <. (/) , R >. , <. 1o , S >. } ) ) |
| 22 | 0ex | |- (/) e. _V |
|
| 23 | 22 | prid1 | |- (/) e. { (/) , 1o } |
| 24 | df2o3 | |- 2o = { (/) , 1o } |
|
| 25 | 23 24 | eleqtrri | |- (/) e. 2o |
| 26 | fvco2 | |- ( ( { <. (/) , R >. , <. 1o , S >. } Fn 2o /\ (/) e. 2o ) -> ( ( TopOpen o. { <. (/) , R >. , <. 1o , S >. } ) ` (/) ) = ( TopOpen ` ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) ) ) |
|
| 27 | 12 25 26 | sylancl | |- ( ( R e. TopSp /\ S e. TopSp ) -> ( ( TopOpen o. { <. (/) , R >. , <. 1o , S >. } ) ` (/) ) = ( TopOpen ` ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) ) ) |
| 28 | fvpr0o | |- ( R e. TopSp -> ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) = R ) |
|
| 29 | 28 | adantr | |- ( ( R e. TopSp /\ S e. TopSp ) -> ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) = R ) |
| 30 | 29 | fveq2d | |- ( ( R e. TopSp /\ S e. TopSp ) -> ( TopOpen ` ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) ) = ( TopOpen ` R ) ) |
| 31 | 30 2 | eqtr4di | |- ( ( R e. TopSp /\ S e. TopSp ) -> ( TopOpen ` ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) ) = J ) |
| 32 | 27 31 | eqtrd | |- ( ( R e. TopSp /\ S e. TopSp ) -> ( ( TopOpen o. { <. (/) , R >. , <. 1o , S >. } ) ` (/) ) = J ) |
| 33 | 32 | opeq2d | |- ( ( R e. TopSp /\ S e. TopSp ) -> <. (/) , ( ( TopOpen o. { <. (/) , R >. , <. 1o , S >. } ) ` (/) ) >. = <. (/) , J >. ) |
| 34 | 1oex | |- 1o e. _V |
|
| 35 | 34 | prid2 | |- 1o e. { (/) , 1o } |
| 36 | 35 24 | eleqtrri | |- 1o e. 2o |
| 37 | fvco2 | |- ( ( { <. (/) , R >. , <. 1o , S >. } Fn 2o /\ 1o e. 2o ) -> ( ( TopOpen o. { <. (/) , R >. , <. 1o , S >. } ) ` 1o ) = ( TopOpen ` ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) ) ) |
|
| 38 | 12 36 37 | sylancl | |- ( ( R e. TopSp /\ S e. TopSp ) -> ( ( TopOpen o. { <. (/) , R >. , <. 1o , S >. } ) ` 1o ) = ( TopOpen ` ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) ) ) |
| 39 | fvpr1o | |- ( S e. TopSp -> ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) = S ) |
|
| 40 | 39 | adantl | |- ( ( R e. TopSp /\ S e. TopSp ) -> ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) = S ) |
| 41 | 40 | fveq2d | |- ( ( R e. TopSp /\ S e. TopSp ) -> ( TopOpen ` ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) ) = ( TopOpen ` S ) ) |
| 42 | 41 3 | eqtr4di | |- ( ( R e. TopSp /\ S e. TopSp ) -> ( TopOpen ` ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) ) = K ) |
| 43 | 38 42 | eqtrd | |- ( ( R e. TopSp /\ S e. TopSp ) -> ( ( TopOpen o. { <. (/) , R >. , <. 1o , S >. } ) ` 1o ) = K ) |
| 44 | 43 | opeq2d | |- ( ( R e. TopSp /\ S e. TopSp ) -> <. 1o , ( ( TopOpen o. { <. (/) , R >. , <. 1o , S >. } ) ` 1o ) >. = <. 1o , K >. ) |
| 45 | 33 44 | preq12d | |- ( ( R e. TopSp /\ S e. TopSp ) -> { <. (/) , ( ( TopOpen o. { <. (/) , R >. , <. 1o , S >. } ) ` (/) ) >. , <. 1o , ( ( TopOpen o. { <. (/) , R >. , <. 1o , S >. } ) ` 1o ) >. } = { <. (/) , J >. , <. 1o , K >. } ) |
| 46 | 21 45 | eqtr3d | |- ( ( R e. TopSp /\ S e. TopSp ) -> ( TopOpen o. { <. (/) , R >. , <. 1o , S >. } ) = { <. (/) , J >. , <. 1o , K >. } ) |
| 47 | 46 | fveq2d | |- ( ( R e. TopSp /\ S e. TopSp ) -> ( Xt_ ` ( TopOpen o. { <. (/) , R >. , <. 1o , S >. } ) ) = ( Xt_ ` { <. (/) , J >. , <. 1o , K >. } ) ) |
| 48 | 14 47 | eqtrd | |- ( ( R e. TopSp /\ S e. TopSp ) -> ( TopOpen ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( Xt_ ` { <. (/) , J >. , <. 1o , K >. } ) ) |
| 49 | 48 | oveq1d | |- ( ( R e. TopSp /\ S e. TopSp ) -> ( ( TopOpen ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) qTop `' F ) = ( ( Xt_ ` { <. (/) , J >. , <. 1o , K >. } ) qTop `' F ) ) |
| 50 | simpl | |- ( ( R e. TopSp /\ S e. TopSp ) -> R e. TopSp ) |
|
| 51 | simpr | |- ( ( R e. TopSp /\ S e. TopSp ) -> S e. TopSp ) |
|
| 52 | eqid | |- ( Scalar ` R ) = ( Scalar ` R ) |
|
| 53 | 1 5 6 50 51 7 52 8 | xpsval | |- ( ( R e. TopSp /\ S e. TopSp ) -> T = ( `' F "s ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 54 | 1 5 6 50 51 7 52 8 | xpsrnbas | |- ( ( R e. TopSp /\ S e. TopSp ) -> ran F = ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 55 | 7 | xpsff1o2 | |- F : ( X X. Y ) -1-1-onto-> ran F |
| 56 | f1ocnv | |- ( F : ( X X. Y ) -1-1-onto-> ran F -> `' F : ran F -1-1-onto-> ( X X. Y ) ) |
|
| 57 | 55 56 | mp1i | |- ( ( R e. TopSp /\ S e. TopSp ) -> `' F : ran F -1-1-onto-> ( X X. Y ) ) |
| 58 | f1ofo | |- ( `' F : ran F -1-1-onto-> ( X X. Y ) -> `' F : ran F -onto-> ( X X. Y ) ) |
|
| 59 | 57 58 | syl | |- ( ( R e. TopSp /\ S e. TopSp ) -> `' F : ran F -onto-> ( X X. Y ) ) |
| 60 | ovexd | |- ( ( R e. TopSp /\ S e. TopSp ) -> ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) e. _V ) |
|
| 61 | 53 54 59 60 13 4 | imastopn | |- ( ( R e. TopSp /\ S e. TopSp ) -> O = ( ( TopOpen ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) qTop `' F ) ) |
| 62 | 5 2 | istps | |- ( R e. TopSp <-> J e. ( TopOn ` X ) ) |
| 63 | 50 62 | sylib | |- ( ( R e. TopSp /\ S e. TopSp ) -> J e. ( TopOn ` X ) ) |
| 64 | 6 3 | istps | |- ( S e. TopSp <-> K e. ( TopOn ` Y ) ) |
| 65 | 51 64 | sylib | |- ( ( R e. TopSp /\ S e. TopSp ) -> K e. ( TopOn ` Y ) ) |
| 66 | 7 63 65 | xpstopnlem1 | |- ( ( R e. TopSp /\ S e. TopSp ) -> F e. ( ( J tX K ) Homeo ( Xt_ ` { <. (/) , J >. , <. 1o , K >. } ) ) ) |
| 67 | hmeocnv | |- ( F e. ( ( J tX K ) Homeo ( Xt_ ` { <. (/) , J >. , <. 1o , K >. } ) ) -> `' F e. ( ( Xt_ ` { <. (/) , J >. , <. 1o , K >. } ) Homeo ( J tX K ) ) ) |
|
| 68 | hmeoqtop | |- ( `' F e. ( ( Xt_ ` { <. (/) , J >. , <. 1o , K >. } ) Homeo ( J tX K ) ) -> ( J tX K ) = ( ( Xt_ ` { <. (/) , J >. , <. 1o , K >. } ) qTop `' F ) ) |
|
| 69 | 66 67 68 | 3syl | |- ( ( R e. TopSp /\ S e. TopSp ) -> ( J tX K ) = ( ( Xt_ ` { <. (/) , J >. , <. 1o , K >. } ) qTop `' F ) ) |
| 70 | 49 61 69 | 3eqtr4d | |- ( ( R e. TopSp /\ S e. TopSp ) -> O = ( J tX K ) ) |