This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmeocnv | |- ( F e. ( J Homeo K ) -> `' F e. ( K Homeo J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeocnvcn | |- ( F e. ( J Homeo K ) -> `' F e. ( K Cn J ) ) |
|
| 2 | hmeocn | |- ( F e. ( J Homeo K ) -> F e. ( J Cn K ) ) |
|
| 3 | eqid | |- U. J = U. J |
|
| 4 | eqid | |- U. K = U. K |
|
| 5 | 3 4 | cnf | |- ( F e. ( J Cn K ) -> F : U. J --> U. K ) |
| 6 | frel | |- ( F : U. J --> U. K -> Rel F ) |
|
| 7 | 2 5 6 | 3syl | |- ( F e. ( J Homeo K ) -> Rel F ) |
| 8 | dfrel2 | |- ( Rel F <-> `' `' F = F ) |
|
| 9 | 7 8 | sylib | |- ( F e. ( J Homeo K ) -> `' `' F = F ) |
| 10 | 9 2 | eqeltrd | |- ( F e. ( J Homeo K ) -> `' `' F e. ( J Cn K ) ) |
| 11 | ishmeo | |- ( `' F e. ( K Homeo J ) <-> ( `' F e. ( K Cn J ) /\ `' `' F e. ( J Cn K ) ) ) |
|
| 12 | 1 10 11 | sylanbrc | |- ( F e. ( J Homeo K ) -> `' F e. ( K Homeo J ) ) |