This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function on 2o is determined by its values at zero and one. (Contributed by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpsfeq | |- ( G Fn 2o -> { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } = G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex | |- ( G ` (/) ) e. _V |
|
| 2 | fvex | |- ( G ` 1o ) e. _V |
|
| 3 | fnpr2o | |- ( ( ( G ` (/) ) e. _V /\ ( G ` 1o ) e. _V ) -> { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } Fn 2o ) |
|
| 4 | 1 2 3 | mp2an | |- { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } Fn 2o |
| 5 | 4 | a1i | |- ( G Fn 2o -> { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } Fn 2o ) |
| 6 | id | |- ( G Fn 2o -> G Fn 2o ) |
|
| 7 | elpri | |- ( k e. { (/) , 1o } -> ( k = (/) \/ k = 1o ) ) |
|
| 8 | df2o3 | |- 2o = { (/) , 1o } |
|
| 9 | 7 8 | eleq2s | |- ( k e. 2o -> ( k = (/) \/ k = 1o ) ) |
| 10 | fvpr0o | |- ( ( G ` (/) ) e. _V -> ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` (/) ) = ( G ` (/) ) ) |
|
| 11 | 1 10 | ax-mp | |- ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` (/) ) = ( G ` (/) ) |
| 12 | fveq2 | |- ( k = (/) -> ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` k ) = ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` (/) ) ) |
|
| 13 | fveq2 | |- ( k = (/) -> ( G ` k ) = ( G ` (/) ) ) |
|
| 14 | 11 12 13 | 3eqtr4a | |- ( k = (/) -> ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` k ) = ( G ` k ) ) |
| 15 | fvpr1o | |- ( ( G ` 1o ) e. _V -> ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` 1o ) = ( G ` 1o ) ) |
|
| 16 | 2 15 | ax-mp | |- ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` 1o ) = ( G ` 1o ) |
| 17 | fveq2 | |- ( k = 1o -> ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` k ) = ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` 1o ) ) |
|
| 18 | fveq2 | |- ( k = 1o -> ( G ` k ) = ( G ` 1o ) ) |
|
| 19 | 16 17 18 | 3eqtr4a | |- ( k = 1o -> ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` k ) = ( G ` k ) ) |
| 20 | 14 19 | jaoi | |- ( ( k = (/) \/ k = 1o ) -> ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` k ) = ( G ` k ) ) |
| 21 | 9 20 | syl | |- ( k e. 2o -> ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` k ) = ( G ` k ) ) |
| 22 | 21 | adantl | |- ( ( G Fn 2o /\ k e. 2o ) -> ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` k ) = ( G ` k ) ) |
| 23 | 5 6 22 | eqfnfvd | |- ( G Fn 2o -> { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } = G ) |