This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A homeomorphism is a quotient map. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmeoqtop | |- ( F e. ( J Homeo K ) -> K = ( J qTop F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeocn | |- ( F e. ( J Homeo K ) -> F e. ( J Cn K ) ) |
|
| 2 | cntop2 | |- ( F e. ( J Cn K ) -> K e. Top ) |
|
| 3 | 1 2 | syl | |- ( F e. ( J Homeo K ) -> K e. Top ) |
| 4 | toptopon2 | |- ( K e. Top <-> K e. ( TopOn ` U. K ) ) |
|
| 5 | 3 4 | sylib | |- ( F e. ( J Homeo K ) -> K e. ( TopOn ` U. K ) ) |
| 6 | eqid | |- U. J = U. J |
|
| 7 | eqid | |- U. K = U. K |
|
| 8 | 6 7 | hmeof1o | |- ( F e. ( J Homeo K ) -> F : U. J -1-1-onto-> U. K ) |
| 9 | f1ofo | |- ( F : U. J -1-1-onto-> U. K -> F : U. J -onto-> U. K ) |
|
| 10 | forn | |- ( F : U. J -onto-> U. K -> ran F = U. K ) |
|
| 11 | 8 9 10 | 3syl | |- ( F e. ( J Homeo K ) -> ran F = U. K ) |
| 12 | hmeoima | |- ( ( F e. ( J Homeo K ) /\ x e. J ) -> ( F " x ) e. K ) |
|
| 13 | 5 1 11 12 | qtopomap | |- ( F e. ( J Homeo K ) -> K = ( J qTop F ) ) |