This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two extended nonnegative integers is 0 iff each of the two extended nonnegative integers is 0 . (Contributed by AV, 14-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xnn0xadd0 | |- ( ( A e. NN0* /\ B e. NN0* ) -> ( ( A +e B ) = 0 <-> ( A = 0 /\ B = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxnn0 | |- ( A e. NN0* <-> ( A e. NN0 \/ A = +oo ) ) |
|
| 2 | elxnn0 | |- ( B e. NN0* <-> ( B e. NN0 \/ B = +oo ) ) |
|
| 3 | nn0re | |- ( A e. NN0 -> A e. RR ) |
|
| 4 | nn0re | |- ( B e. NN0 -> B e. RR ) |
|
| 5 | rexadd | |- ( ( A e. RR /\ B e. RR ) -> ( A +e B ) = ( A + B ) ) |
|
| 6 | 3 4 5 | syl2an | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( A +e B ) = ( A + B ) ) |
| 7 | 6 | eqeq1d | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A +e B ) = 0 <-> ( A + B ) = 0 ) ) |
| 8 | nn0ge0 | |- ( A e. NN0 -> 0 <_ A ) |
|
| 9 | 3 8 | jca | |- ( A e. NN0 -> ( A e. RR /\ 0 <_ A ) ) |
| 10 | nn0ge0 | |- ( B e. NN0 -> 0 <_ B ) |
|
| 11 | 4 10 | jca | |- ( B e. NN0 -> ( B e. RR /\ 0 <_ B ) ) |
| 12 | add20 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A + B ) = 0 <-> ( A = 0 /\ B = 0 ) ) ) |
|
| 13 | 9 11 12 | syl2an | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A + B ) = 0 <-> ( A = 0 /\ B = 0 ) ) ) |
| 14 | 7 13 | bitrd | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A +e B ) = 0 <-> ( A = 0 /\ B = 0 ) ) ) |
| 15 | 14 | biimpd | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) |
| 16 | 15 | expcom | |- ( B e. NN0 -> ( A e. NN0 -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) ) |
| 17 | oveq2 | |- ( B = +oo -> ( A +e B ) = ( A +e +oo ) ) |
|
| 18 | 17 | eqeq1d | |- ( B = +oo -> ( ( A +e B ) = 0 <-> ( A +e +oo ) = 0 ) ) |
| 19 | 18 | adantr | |- ( ( B = +oo /\ A e. NN0 ) -> ( ( A +e B ) = 0 <-> ( A +e +oo ) = 0 ) ) |
| 20 | nn0xnn0 | |- ( A e. NN0 -> A e. NN0* ) |
|
| 21 | xnn0xrnemnf | |- ( A e. NN0* -> ( A e. RR* /\ A =/= -oo ) ) |
|
| 22 | xaddpnf1 | |- ( ( A e. RR* /\ A =/= -oo ) -> ( A +e +oo ) = +oo ) |
|
| 23 | 20 21 22 | 3syl | |- ( A e. NN0 -> ( A +e +oo ) = +oo ) |
| 24 | 23 | adantl | |- ( ( B = +oo /\ A e. NN0 ) -> ( A +e +oo ) = +oo ) |
| 25 | 24 | eqeq1d | |- ( ( B = +oo /\ A e. NN0 ) -> ( ( A +e +oo ) = 0 <-> +oo = 0 ) ) |
| 26 | 19 25 | bitrd | |- ( ( B = +oo /\ A e. NN0 ) -> ( ( A +e B ) = 0 <-> +oo = 0 ) ) |
| 27 | 0re | |- 0 e. RR |
|
| 28 | renepnf | |- ( 0 e. RR -> 0 =/= +oo ) |
|
| 29 | 27 28 | ax-mp | |- 0 =/= +oo |
| 30 | 29 | nesymi | |- -. +oo = 0 |
| 31 | 30 | pm2.21i | |- ( +oo = 0 -> ( A = 0 /\ B = 0 ) ) |
| 32 | 26 31 | biimtrdi | |- ( ( B = +oo /\ A e. NN0 ) -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) |
| 33 | 32 | ex | |- ( B = +oo -> ( A e. NN0 -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) ) |
| 34 | 16 33 | jaoi | |- ( ( B e. NN0 \/ B = +oo ) -> ( A e. NN0 -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) ) |
| 35 | 2 34 | sylbi | |- ( B e. NN0* -> ( A e. NN0 -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) ) |
| 36 | 35 | com12 | |- ( A e. NN0 -> ( B e. NN0* -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) ) |
| 37 | oveq1 | |- ( A = +oo -> ( A +e B ) = ( +oo +e B ) ) |
|
| 38 | 37 | eqeq1d | |- ( A = +oo -> ( ( A +e B ) = 0 <-> ( +oo +e B ) = 0 ) ) |
| 39 | xnn0xrnemnf | |- ( B e. NN0* -> ( B e. RR* /\ B =/= -oo ) ) |
|
| 40 | xaddpnf2 | |- ( ( B e. RR* /\ B =/= -oo ) -> ( +oo +e B ) = +oo ) |
|
| 41 | 39 40 | syl | |- ( B e. NN0* -> ( +oo +e B ) = +oo ) |
| 42 | 41 | eqeq1d | |- ( B e. NN0* -> ( ( +oo +e B ) = 0 <-> +oo = 0 ) ) |
| 43 | 38 42 | sylan9bb | |- ( ( A = +oo /\ B e. NN0* ) -> ( ( A +e B ) = 0 <-> +oo = 0 ) ) |
| 44 | 43 31 | biimtrdi | |- ( ( A = +oo /\ B e. NN0* ) -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) |
| 45 | 44 | ex | |- ( A = +oo -> ( B e. NN0* -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) ) |
| 46 | 36 45 | jaoi | |- ( ( A e. NN0 \/ A = +oo ) -> ( B e. NN0* -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) ) |
| 47 | 1 46 | sylbi | |- ( A e. NN0* -> ( B e. NN0* -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) ) |
| 48 | 47 | imp | |- ( ( A e. NN0* /\ B e. NN0* ) -> ( ( A +e B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) |
| 49 | oveq12 | |- ( ( A = 0 /\ B = 0 ) -> ( A +e B ) = ( 0 +e 0 ) ) |
|
| 50 | 0xr | |- 0 e. RR* |
|
| 51 | xaddrid | |- ( 0 e. RR* -> ( 0 +e 0 ) = 0 ) |
|
| 52 | 50 51 | ax-mp | |- ( 0 +e 0 ) = 0 |
| 53 | 49 52 | eqtrdi | |- ( ( A = 0 /\ B = 0 ) -> ( A +e B ) = 0 ) |
| 54 | 48 53 | impbid1 | |- ( ( A e. NN0* /\ B e. NN0* ) -> ( ( A +e B ) = 0 <-> ( A = 0 /\ B = 0 ) ) ) |