This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two extended nonnegative integers is 0 iff each of the two extended nonnegative integers is 0 . (Contributed by AV, 14-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xnn0xadd0 | ⊢ ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) → ( ( 𝐴 +𝑒 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxnn0 | ⊢ ( 𝐴 ∈ ℕ0* ↔ ( 𝐴 ∈ ℕ0 ∨ 𝐴 = +∞ ) ) | |
| 2 | elxnn0 | ⊢ ( 𝐵 ∈ ℕ0* ↔ ( 𝐵 ∈ ℕ0 ∨ 𝐵 = +∞ ) ) | |
| 3 | nn0re | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) | |
| 4 | nn0re | ⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ ) | |
| 5 | rexadd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 +𝑒 𝐵 ) = ( 𝐴 + 𝐵 ) ) | |
| 6 | 3 4 5 | syl2an | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 +𝑒 𝐵 ) = ( 𝐴 + 𝐵 ) ) |
| 7 | 6 | eqeq1d | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 +𝑒 𝐵 ) = 0 ↔ ( 𝐴 + 𝐵 ) = 0 ) ) |
| 8 | nn0ge0 | ⊢ ( 𝐴 ∈ ℕ0 → 0 ≤ 𝐴 ) | |
| 9 | 3 8 | jca | ⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
| 10 | nn0ge0 | ⊢ ( 𝐵 ∈ ℕ0 → 0 ≤ 𝐵 ) | |
| 11 | 4 10 | jca | ⊢ ( 𝐵 ∈ ℕ0 → ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
| 12 | add20 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 + 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) | |
| 13 | 9 11 12 | syl2an | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 + 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
| 14 | 7 13 | bitrd | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 +𝑒 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
| 15 | 14 | biimpd | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 +𝑒 𝐵 ) = 0 → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
| 16 | 15 | expcom | ⊢ ( 𝐵 ∈ ℕ0 → ( 𝐴 ∈ ℕ0 → ( ( 𝐴 +𝑒 𝐵 ) = 0 → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) ) |
| 17 | oveq2 | ⊢ ( 𝐵 = +∞ → ( 𝐴 +𝑒 𝐵 ) = ( 𝐴 +𝑒 +∞ ) ) | |
| 18 | 17 | eqeq1d | ⊢ ( 𝐵 = +∞ → ( ( 𝐴 +𝑒 𝐵 ) = 0 ↔ ( 𝐴 +𝑒 +∞ ) = 0 ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝐵 = +∞ ∧ 𝐴 ∈ ℕ0 ) → ( ( 𝐴 +𝑒 𝐵 ) = 0 ↔ ( 𝐴 +𝑒 +∞ ) = 0 ) ) |
| 20 | nn0xnn0 | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℕ0* ) | |
| 21 | xnn0xrnemnf | ⊢ ( 𝐴 ∈ ℕ0* → ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) ) | |
| 22 | xaddpnf1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) → ( 𝐴 +𝑒 +∞ ) = +∞ ) | |
| 23 | 20 21 22 | 3syl | ⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 +𝑒 +∞ ) = +∞ ) |
| 24 | 23 | adantl | ⊢ ( ( 𝐵 = +∞ ∧ 𝐴 ∈ ℕ0 ) → ( 𝐴 +𝑒 +∞ ) = +∞ ) |
| 25 | 24 | eqeq1d | ⊢ ( ( 𝐵 = +∞ ∧ 𝐴 ∈ ℕ0 ) → ( ( 𝐴 +𝑒 +∞ ) = 0 ↔ +∞ = 0 ) ) |
| 26 | 19 25 | bitrd | ⊢ ( ( 𝐵 = +∞ ∧ 𝐴 ∈ ℕ0 ) → ( ( 𝐴 +𝑒 𝐵 ) = 0 ↔ +∞ = 0 ) ) |
| 27 | 0re | ⊢ 0 ∈ ℝ | |
| 28 | renepnf | ⊢ ( 0 ∈ ℝ → 0 ≠ +∞ ) | |
| 29 | 27 28 | ax-mp | ⊢ 0 ≠ +∞ |
| 30 | 29 | nesymi | ⊢ ¬ +∞ = 0 |
| 31 | 30 | pm2.21i | ⊢ ( +∞ = 0 → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
| 32 | 26 31 | biimtrdi | ⊢ ( ( 𝐵 = +∞ ∧ 𝐴 ∈ ℕ0 ) → ( ( 𝐴 +𝑒 𝐵 ) = 0 → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
| 33 | 32 | ex | ⊢ ( 𝐵 = +∞ → ( 𝐴 ∈ ℕ0 → ( ( 𝐴 +𝑒 𝐵 ) = 0 → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) ) |
| 34 | 16 33 | jaoi | ⊢ ( ( 𝐵 ∈ ℕ0 ∨ 𝐵 = +∞ ) → ( 𝐴 ∈ ℕ0 → ( ( 𝐴 +𝑒 𝐵 ) = 0 → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) ) |
| 35 | 2 34 | sylbi | ⊢ ( 𝐵 ∈ ℕ0* → ( 𝐴 ∈ ℕ0 → ( ( 𝐴 +𝑒 𝐵 ) = 0 → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) ) |
| 36 | 35 | com12 | ⊢ ( 𝐴 ∈ ℕ0 → ( 𝐵 ∈ ℕ0* → ( ( 𝐴 +𝑒 𝐵 ) = 0 → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) ) |
| 37 | oveq1 | ⊢ ( 𝐴 = +∞ → ( 𝐴 +𝑒 𝐵 ) = ( +∞ +𝑒 𝐵 ) ) | |
| 38 | 37 | eqeq1d | ⊢ ( 𝐴 = +∞ → ( ( 𝐴 +𝑒 𝐵 ) = 0 ↔ ( +∞ +𝑒 𝐵 ) = 0 ) ) |
| 39 | xnn0xrnemnf | ⊢ ( 𝐵 ∈ ℕ0* → ( 𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞ ) ) | |
| 40 | xaddpnf2 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞ ) → ( +∞ +𝑒 𝐵 ) = +∞ ) | |
| 41 | 39 40 | syl | ⊢ ( 𝐵 ∈ ℕ0* → ( +∞ +𝑒 𝐵 ) = +∞ ) |
| 42 | 41 | eqeq1d | ⊢ ( 𝐵 ∈ ℕ0* → ( ( +∞ +𝑒 𝐵 ) = 0 ↔ +∞ = 0 ) ) |
| 43 | 38 42 | sylan9bb | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℕ0* ) → ( ( 𝐴 +𝑒 𝐵 ) = 0 ↔ +∞ = 0 ) ) |
| 44 | 43 31 | biimtrdi | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℕ0* ) → ( ( 𝐴 +𝑒 𝐵 ) = 0 → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
| 45 | 44 | ex | ⊢ ( 𝐴 = +∞ → ( 𝐵 ∈ ℕ0* → ( ( 𝐴 +𝑒 𝐵 ) = 0 → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) ) |
| 46 | 36 45 | jaoi | ⊢ ( ( 𝐴 ∈ ℕ0 ∨ 𝐴 = +∞ ) → ( 𝐵 ∈ ℕ0* → ( ( 𝐴 +𝑒 𝐵 ) = 0 → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) ) |
| 47 | 1 46 | sylbi | ⊢ ( 𝐴 ∈ ℕ0* → ( 𝐵 ∈ ℕ0* → ( ( 𝐴 +𝑒 𝐵 ) = 0 → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) ) |
| 48 | 47 | imp | ⊢ ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) → ( ( 𝐴 +𝑒 𝐵 ) = 0 → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
| 49 | oveq12 | ⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( 𝐴 +𝑒 𝐵 ) = ( 0 +𝑒 0 ) ) | |
| 50 | 0xr | ⊢ 0 ∈ ℝ* | |
| 51 | xaddrid | ⊢ ( 0 ∈ ℝ* → ( 0 +𝑒 0 ) = 0 ) | |
| 52 | 50 51 | ax-mp | ⊢ ( 0 +𝑒 0 ) = 0 |
| 53 | 49 52 | eqtrdi | ⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( 𝐴 +𝑒 𝐵 ) = 0 ) |
| 54 | 48 53 | impbid1 | ⊢ ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) → ( ( 𝐴 +𝑒 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |