This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: I is monotone: increasing the exponent, the integral decreases. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wallispilem1.1 | |- I = ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) |
|
| wallispilem1.2 | |- ( ph -> N e. NN0 ) |
||
| Assertion | wallispilem1 | |- ( ph -> ( I ` ( N + 1 ) ) <_ ( I ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wallispilem1.1 | |- I = ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) |
|
| 2 | wallispilem1.2 | |- ( ph -> N e. NN0 ) |
|
| 3 | 0re | |- 0 e. RR |
|
| 4 | 3 | a1i | |- ( ph -> 0 e. RR ) |
| 5 | pire | |- _pi e. RR |
|
| 6 | 5 | a1i | |- ( ph -> _pi e. RR ) |
| 7 | peano2nn0 | |- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
|
| 8 | 2 7 | syl | |- ( ph -> ( N + 1 ) e. NN0 ) |
| 9 | iblioosinexp | |- ( ( 0 e. RR /\ _pi e. RR /\ ( N + 1 ) e. NN0 ) -> ( x e. ( 0 (,) _pi ) |-> ( ( sin ` x ) ^ ( N + 1 ) ) ) e. L^1 ) |
|
| 10 | 4 6 8 9 | syl3anc | |- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( sin ` x ) ^ ( N + 1 ) ) ) e. L^1 ) |
| 11 | iblioosinexp | |- ( ( 0 e. RR /\ _pi e. RR /\ N e. NN0 ) -> ( x e. ( 0 (,) _pi ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 ) |
|
| 12 | 4 6 2 11 | syl3anc | |- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 ) |
| 13 | elioore | |- ( x e. ( 0 (,) _pi ) -> x e. RR ) |
|
| 14 | 13 | resincld | |- ( x e. ( 0 (,) _pi ) -> ( sin ` x ) e. RR ) |
| 15 | 14 | adantl | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( sin ` x ) e. RR ) |
| 16 | 8 | adantr | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( N + 1 ) e. NN0 ) |
| 17 | 15 16 | reexpcld | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ ( N + 1 ) ) e. RR ) |
| 18 | 2 | adantr | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> N e. NN0 ) |
| 19 | 15 18 | reexpcld | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ N ) e. RR ) |
| 20 | 2 | nn0zd | |- ( ph -> N e. ZZ ) |
| 21 | uzid | |- ( N e. ZZ -> N e. ( ZZ>= ` N ) ) |
|
| 22 | 20 21 | syl | |- ( ph -> N e. ( ZZ>= ` N ) ) |
| 23 | peano2uz | |- ( N e. ( ZZ>= ` N ) -> ( N + 1 ) e. ( ZZ>= ` N ) ) |
|
| 24 | 22 23 | syl | |- ( ph -> ( N + 1 ) e. ( ZZ>= ` N ) ) |
| 25 | 24 | adantr | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( N + 1 ) e. ( ZZ>= ` N ) ) |
| 26 | 14 3 | jctil | |- ( x e. ( 0 (,) _pi ) -> ( 0 e. RR /\ ( sin ` x ) e. RR ) ) |
| 27 | sinq12gt0 | |- ( x e. ( 0 (,) _pi ) -> 0 < ( sin ` x ) ) |
|
| 28 | ltle | |- ( ( 0 e. RR /\ ( sin ` x ) e. RR ) -> ( 0 < ( sin ` x ) -> 0 <_ ( sin ` x ) ) ) |
|
| 29 | 26 27 28 | sylc | |- ( x e. ( 0 (,) _pi ) -> 0 <_ ( sin ` x ) ) |
| 30 | 29 | adantl | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> 0 <_ ( sin ` x ) ) |
| 31 | sinbnd | |- ( x e. RR -> ( -u 1 <_ ( sin ` x ) /\ ( sin ` x ) <_ 1 ) ) |
|
| 32 | 13 31 | syl | |- ( x e. ( 0 (,) _pi ) -> ( -u 1 <_ ( sin ` x ) /\ ( sin ` x ) <_ 1 ) ) |
| 33 | 32 | simprd | |- ( x e. ( 0 (,) _pi ) -> ( sin ` x ) <_ 1 ) |
| 34 | 33 | adantl | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( sin ` x ) <_ 1 ) |
| 35 | 15 18 25 30 34 | leexp2rd | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ ( N + 1 ) ) <_ ( ( sin ` x ) ^ N ) ) |
| 36 | 10 12 17 19 35 | itgle | |- ( ph -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N + 1 ) ) _d x <_ S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) |
| 37 | oveq2 | |- ( n = ( N + 1 ) -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ ( N + 1 ) ) ) |
|
| 38 | 37 | adantr | |- ( ( n = ( N + 1 ) /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ ( N + 1 ) ) ) |
| 39 | 38 | itgeq2dv | |- ( n = ( N + 1 ) -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N + 1 ) ) _d x ) |
| 40 | itgex | |- S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N + 1 ) ) _d x e. _V |
|
| 41 | 39 1 40 | fvmpt | |- ( ( N + 1 ) e. NN0 -> ( I ` ( N + 1 ) ) = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N + 1 ) ) _d x ) |
| 42 | 8 41 | syl | |- ( ph -> ( I ` ( N + 1 ) ) = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N + 1 ) ) _d x ) |
| 43 | oveq2 | |- ( n = N -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ N ) ) |
|
| 44 | 43 | adantr | |- ( ( n = N /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ N ) ) |
| 45 | 44 | itgeq2dv | |- ( n = N -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) |
| 46 | itgex | |- S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x e. _V |
|
| 47 | 45 1 46 | fvmpt | |- ( N e. NN0 -> ( I ` N ) = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) |
| 48 | 2 47 | syl | |- ( ph -> ( I ` N ) = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) |
| 49 | 36 42 48 | 3brtr4d | |- ( ph -> ( I ` ( N + 1 ) ) <_ ( I ` N ) ) |