This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class of sequences of fractions that converge to 1. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clim1fr1.1 | |- F = ( n e. NN |-> ( ( ( A x. n ) + B ) / ( A x. n ) ) ) |
|
| clim1fr1.2 | |- ( ph -> A e. CC ) |
||
| clim1fr1.3 | |- ( ph -> A =/= 0 ) |
||
| clim1fr1.4 | |- ( ph -> B e. CC ) |
||
| Assertion | clim1fr1 | |- ( ph -> F ~~> 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim1fr1.1 | |- F = ( n e. NN |-> ( ( ( A x. n ) + B ) / ( A x. n ) ) ) |
|
| 2 | clim1fr1.2 | |- ( ph -> A e. CC ) |
|
| 3 | clim1fr1.3 | |- ( ph -> A =/= 0 ) |
|
| 4 | clim1fr1.4 | |- ( ph -> B e. CC ) |
|
| 5 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 6 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 7 | nnex | |- NN e. _V |
|
| 8 | 7 | mptex | |- ( n e. NN |-> 1 ) e. _V |
| 9 | 8 | a1i | |- ( ph -> ( n e. NN |-> 1 ) e. _V ) |
| 10 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 11 | eqidd | |- ( k e. NN -> ( n e. NN |-> 1 ) = ( n e. NN |-> 1 ) ) |
|
| 12 | eqidd | |- ( ( k e. NN /\ n = k ) -> 1 = 1 ) |
|
| 13 | id | |- ( k e. NN -> k e. NN ) |
|
| 14 | 1cnd | |- ( k e. NN -> 1 e. CC ) |
|
| 15 | 11 12 13 14 | fvmptd | |- ( k e. NN -> ( ( n e. NN |-> 1 ) ` k ) = 1 ) |
| 16 | 15 | adantl | |- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> 1 ) ` k ) = 1 ) |
| 17 | 5 6 9 10 16 | climconst | |- ( ph -> ( n e. NN |-> 1 ) ~~> 1 ) |
| 18 | 7 | mptex | |- ( n e. NN |-> ( ( ( A x. n ) + B ) / ( A x. n ) ) ) e. _V |
| 19 | 1 18 | eqeltri | |- F e. _V |
| 20 | 19 | a1i | |- ( ph -> F e. _V ) |
| 21 | 4 | adantr | |- ( ( ph /\ n e. NN ) -> B e. CC ) |
| 22 | 2 | adantr | |- ( ( ph /\ n e. NN ) -> A e. CC ) |
| 23 | nncn | |- ( n e. NN -> n e. CC ) |
|
| 24 | 23 | adantl | |- ( ( ph /\ n e. NN ) -> n e. CC ) |
| 25 | 3 | adantr | |- ( ( ph /\ n e. NN ) -> A =/= 0 ) |
| 26 | nnne0 | |- ( n e. NN -> n =/= 0 ) |
|
| 27 | 26 | adantl | |- ( ( ph /\ n e. NN ) -> n =/= 0 ) |
| 28 | 21 22 24 25 27 | divdiv1d | |- ( ( ph /\ n e. NN ) -> ( ( B / A ) / n ) = ( B / ( A x. n ) ) ) |
| 29 | 28 | mpteq2dva | |- ( ph -> ( n e. NN |-> ( ( B / A ) / n ) ) = ( n e. NN |-> ( B / ( A x. n ) ) ) ) |
| 30 | 4 2 3 | divcld | |- ( ph -> ( B / A ) e. CC ) |
| 31 | divcnv | |- ( ( B / A ) e. CC -> ( n e. NN |-> ( ( B / A ) / n ) ) ~~> 0 ) |
|
| 32 | 30 31 | syl | |- ( ph -> ( n e. NN |-> ( ( B / A ) / n ) ) ~~> 0 ) |
| 33 | 29 32 | eqbrtrrd | |- ( ph -> ( n e. NN |-> ( B / ( A x. n ) ) ) ~~> 0 ) |
| 34 | eqid | |- ( n e. NN |-> 1 ) = ( n e. NN |-> 1 ) |
|
| 35 | 1cnd | |- ( n e. NN -> 1 e. CC ) |
|
| 36 | 34 35 | fmpti | |- ( n e. NN |-> 1 ) : NN --> CC |
| 37 | 36 | a1i | |- ( ph -> ( n e. NN |-> 1 ) : NN --> CC ) |
| 38 | 37 | ffvelcdmda | |- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> 1 ) ` k ) e. CC ) |
| 39 | 22 24 | mulcld | |- ( ( ph /\ n e. NN ) -> ( A x. n ) e. CC ) |
| 40 | 22 24 25 27 | mulne0d | |- ( ( ph /\ n e. NN ) -> ( A x. n ) =/= 0 ) |
| 41 | 21 39 40 | divcld | |- ( ( ph /\ n e. NN ) -> ( B / ( A x. n ) ) e. CC ) |
| 42 | 41 | fmpttd | |- ( ph -> ( n e. NN |-> ( B / ( A x. n ) ) ) : NN --> CC ) |
| 43 | 42 | ffvelcdmda | |- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( B / ( A x. n ) ) ) ` k ) e. CC ) |
| 44 | oveq2 | |- ( n = k -> ( A x. n ) = ( A x. k ) ) |
|
| 45 | 44 | oveq1d | |- ( n = k -> ( ( A x. n ) + B ) = ( ( A x. k ) + B ) ) |
| 46 | 45 44 | oveq12d | |- ( n = k -> ( ( ( A x. n ) + B ) / ( A x. n ) ) = ( ( ( A x. k ) + B ) / ( A x. k ) ) ) |
| 47 | simpr | |- ( ( ph /\ k e. NN ) -> k e. NN ) |
|
| 48 | 2 | adantr | |- ( ( ph /\ k e. NN ) -> A e. CC ) |
| 49 | 47 | nncnd | |- ( ( ph /\ k e. NN ) -> k e. CC ) |
| 50 | 48 49 | mulcld | |- ( ( ph /\ k e. NN ) -> ( A x. k ) e. CC ) |
| 51 | 4 | adantr | |- ( ( ph /\ k e. NN ) -> B e. CC ) |
| 52 | 50 51 | addcld | |- ( ( ph /\ k e. NN ) -> ( ( A x. k ) + B ) e. CC ) |
| 53 | 3 | adantr | |- ( ( ph /\ k e. NN ) -> A =/= 0 ) |
| 54 | 47 | nnne0d | |- ( ( ph /\ k e. NN ) -> k =/= 0 ) |
| 55 | 48 49 53 54 | mulne0d | |- ( ( ph /\ k e. NN ) -> ( A x. k ) =/= 0 ) |
| 56 | 52 50 55 | divcld | |- ( ( ph /\ k e. NN ) -> ( ( ( A x. k ) + B ) / ( A x. k ) ) e. CC ) |
| 57 | 1 46 47 56 | fvmptd3 | |- ( ( ph /\ k e. NN ) -> ( F ` k ) = ( ( ( A x. k ) + B ) / ( A x. k ) ) ) |
| 58 | 50 51 50 55 | divdird | |- ( ( ph /\ k e. NN ) -> ( ( ( A x. k ) + B ) / ( A x. k ) ) = ( ( ( A x. k ) / ( A x. k ) ) + ( B / ( A x. k ) ) ) ) |
| 59 | 50 55 | dividd | |- ( ( ph /\ k e. NN ) -> ( ( A x. k ) / ( A x. k ) ) = 1 ) |
| 60 | 59 | oveq1d | |- ( ( ph /\ k e. NN ) -> ( ( ( A x. k ) / ( A x. k ) ) + ( B / ( A x. k ) ) ) = ( 1 + ( B / ( A x. k ) ) ) ) |
| 61 | 58 60 | eqtrd | |- ( ( ph /\ k e. NN ) -> ( ( ( A x. k ) + B ) / ( A x. k ) ) = ( 1 + ( B / ( A x. k ) ) ) ) |
| 62 | 16 | eqcomd | |- ( ( ph /\ k e. NN ) -> 1 = ( ( n e. NN |-> 1 ) ` k ) ) |
| 63 | eqidd | |- ( ( ph /\ k e. NN ) -> ( n e. NN |-> ( B / ( A x. n ) ) ) = ( n e. NN |-> ( B / ( A x. n ) ) ) ) |
|
| 64 | simpr | |- ( ( ( ph /\ k e. NN ) /\ n = k ) -> n = k ) |
|
| 65 | 64 | oveq2d | |- ( ( ( ph /\ k e. NN ) /\ n = k ) -> ( A x. n ) = ( A x. k ) ) |
| 66 | 65 | oveq2d | |- ( ( ( ph /\ k e. NN ) /\ n = k ) -> ( B / ( A x. n ) ) = ( B / ( A x. k ) ) ) |
| 67 | 51 50 55 | divcld | |- ( ( ph /\ k e. NN ) -> ( B / ( A x. k ) ) e. CC ) |
| 68 | 63 66 47 67 | fvmptd | |- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( B / ( A x. n ) ) ) ` k ) = ( B / ( A x. k ) ) ) |
| 69 | 68 | eqcomd | |- ( ( ph /\ k e. NN ) -> ( B / ( A x. k ) ) = ( ( n e. NN |-> ( B / ( A x. n ) ) ) ` k ) ) |
| 70 | 62 69 | oveq12d | |- ( ( ph /\ k e. NN ) -> ( 1 + ( B / ( A x. k ) ) ) = ( ( ( n e. NN |-> 1 ) ` k ) + ( ( n e. NN |-> ( B / ( A x. n ) ) ) ` k ) ) ) |
| 71 | 57 61 70 | 3eqtrd | |- ( ( ph /\ k e. NN ) -> ( F ` k ) = ( ( ( n e. NN |-> 1 ) ` k ) + ( ( n e. NN |-> ( B / ( A x. n ) ) ) ` k ) ) ) |
| 72 | 5 6 17 20 33 38 43 71 | climadd | |- ( ph -> F ~~> ( 1 + 0 ) ) |
| 73 | 1p0e1 | |- ( 1 + 0 ) = 1 |
|
| 74 | 72 73 | breqtrdi | |- ( ph -> F ~~> 1 ) |