This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of non-disjoint sets. (Contributed by Mario Carneiro, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | volinun | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( ( vol ` A ) + ( vol ` B ) ) = ( ( vol ` ( A i^i B ) ) + ( vol ` ( A u. B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inundif | |- ( ( A i^i B ) u. ( A \ B ) ) = A |
|
| 2 | 1 | fveq2i | |- ( vol ` ( ( A i^i B ) u. ( A \ B ) ) ) = ( vol ` A ) |
| 3 | inmbl | |- ( ( A e. dom vol /\ B e. dom vol ) -> ( A i^i B ) e. dom vol ) |
|
| 4 | 3 | adantr | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( A i^i B ) e. dom vol ) |
| 5 | difmbl | |- ( ( A e. dom vol /\ B e. dom vol ) -> ( A \ B ) e. dom vol ) |
|
| 6 | 5 | adantr | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( A \ B ) e. dom vol ) |
| 7 | indifcom | |- ( ( A i^i B ) i^i ( A \ B ) ) = ( A i^i ( ( A i^i B ) \ B ) ) |
|
| 8 | difin0 | |- ( ( A i^i B ) \ B ) = (/) |
|
| 9 | 8 | ineq2i | |- ( A i^i ( ( A i^i B ) \ B ) ) = ( A i^i (/) ) |
| 10 | in0 | |- ( A i^i (/) ) = (/) |
|
| 11 | 9 10 | eqtri | |- ( A i^i ( ( A i^i B ) \ B ) ) = (/) |
| 12 | 7 11 | eqtri | |- ( ( A i^i B ) i^i ( A \ B ) ) = (/) |
| 13 | 12 | a1i | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( ( A i^i B ) i^i ( A \ B ) ) = (/) ) |
| 14 | mblvol | |- ( ( A i^i B ) e. dom vol -> ( vol ` ( A i^i B ) ) = ( vol* ` ( A i^i B ) ) ) |
|
| 15 | 4 14 | syl | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` ( A i^i B ) ) = ( vol* ` ( A i^i B ) ) ) |
| 16 | inss1 | |- ( A i^i B ) C_ A |
|
| 17 | 16 | a1i | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( A i^i B ) C_ A ) |
| 18 | mblss | |- ( A e. dom vol -> A C_ RR ) |
|
| 19 | 18 | ad2antrr | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> A C_ RR ) |
| 20 | mblvol | |- ( A e. dom vol -> ( vol ` A ) = ( vol* ` A ) ) |
|
| 21 | 20 | ad2antrr | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` A ) = ( vol* ` A ) ) |
| 22 | simprl | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` A ) e. RR ) |
|
| 23 | 21 22 | eqeltrrd | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol* ` A ) e. RR ) |
| 24 | ovolsscl | |- ( ( ( A i^i B ) C_ A /\ A C_ RR /\ ( vol* ` A ) e. RR ) -> ( vol* ` ( A i^i B ) ) e. RR ) |
|
| 25 | 17 19 23 24 | syl3anc | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol* ` ( A i^i B ) ) e. RR ) |
| 26 | 15 25 | eqeltrd | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` ( A i^i B ) ) e. RR ) |
| 27 | mblvol | |- ( ( A \ B ) e. dom vol -> ( vol ` ( A \ B ) ) = ( vol* ` ( A \ B ) ) ) |
|
| 28 | 6 27 | syl | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` ( A \ B ) ) = ( vol* ` ( A \ B ) ) ) |
| 29 | difssd | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( A \ B ) C_ A ) |
|
| 30 | ovolsscl | |- ( ( ( A \ B ) C_ A /\ A C_ RR /\ ( vol* ` A ) e. RR ) -> ( vol* ` ( A \ B ) ) e. RR ) |
|
| 31 | 29 19 23 30 | syl3anc | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol* ` ( A \ B ) ) e. RR ) |
| 32 | 28 31 | eqeltrd | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` ( A \ B ) ) e. RR ) |
| 33 | volun | |- ( ( ( ( A i^i B ) e. dom vol /\ ( A \ B ) e. dom vol /\ ( ( A i^i B ) i^i ( A \ B ) ) = (/) ) /\ ( ( vol ` ( A i^i B ) ) e. RR /\ ( vol ` ( A \ B ) ) e. RR ) ) -> ( vol ` ( ( A i^i B ) u. ( A \ B ) ) ) = ( ( vol ` ( A i^i B ) ) + ( vol ` ( A \ B ) ) ) ) |
|
| 34 | 4 6 13 26 32 33 | syl32anc | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` ( ( A i^i B ) u. ( A \ B ) ) ) = ( ( vol ` ( A i^i B ) ) + ( vol ` ( A \ B ) ) ) ) |
| 35 | 2 34 | eqtr3id | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` A ) = ( ( vol ` ( A i^i B ) ) + ( vol ` ( A \ B ) ) ) ) |
| 36 | 35 | oveq1d | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( ( vol ` A ) + ( vol ` B ) ) = ( ( ( vol ` ( A i^i B ) ) + ( vol ` ( A \ B ) ) ) + ( vol ` B ) ) ) |
| 37 | 26 | recnd | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` ( A i^i B ) ) e. CC ) |
| 38 | 32 | recnd | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` ( A \ B ) ) e. CC ) |
| 39 | simprr | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` B ) e. RR ) |
|
| 40 | 39 | recnd | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` B ) e. CC ) |
| 41 | 37 38 40 | addassd | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( ( ( vol ` ( A i^i B ) ) + ( vol ` ( A \ B ) ) ) + ( vol ` B ) ) = ( ( vol ` ( A i^i B ) ) + ( ( vol ` ( A \ B ) ) + ( vol ` B ) ) ) ) |
| 42 | simplr | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> B e. dom vol ) |
|
| 43 | disjdifr | |- ( ( A \ B ) i^i B ) = (/) |
|
| 44 | 43 | a1i | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( ( A \ B ) i^i B ) = (/) ) |
| 45 | volun | |- ( ( ( ( A \ B ) e. dom vol /\ B e. dom vol /\ ( ( A \ B ) i^i B ) = (/) ) /\ ( ( vol ` ( A \ B ) ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` ( ( A \ B ) u. B ) ) = ( ( vol ` ( A \ B ) ) + ( vol ` B ) ) ) |
|
| 46 | 6 42 44 32 39 45 | syl32anc | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` ( ( A \ B ) u. B ) ) = ( ( vol ` ( A \ B ) ) + ( vol ` B ) ) ) |
| 47 | undif1 | |- ( ( A \ B ) u. B ) = ( A u. B ) |
|
| 48 | 47 | fveq2i | |- ( vol ` ( ( A \ B ) u. B ) ) = ( vol ` ( A u. B ) ) |
| 49 | 46 48 | eqtr3di | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( ( vol ` ( A \ B ) ) + ( vol ` B ) ) = ( vol ` ( A u. B ) ) ) |
| 50 | 49 | oveq2d | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( ( vol ` ( A i^i B ) ) + ( ( vol ` ( A \ B ) ) + ( vol ` B ) ) ) = ( ( vol ` ( A i^i B ) ) + ( vol ` ( A u. B ) ) ) ) |
| 51 | 36 41 50 | 3eqtrd | |- ( ( ( A e. dom vol /\ B e. dom vol ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( ( vol ` A ) + ( vol ` B ) ) = ( ( vol ` ( A i^i B ) ) + ( vol ` ( A u. B ) ) ) ) |