This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ustuqtop . (Contributed by Thierry Arnoux, 11-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | utopustuq.1 | |- N = ( p e. X |-> ran ( v e. U |-> ( v " { p } ) ) ) |
|
| Assertion | ustuqtoplem | |- ( ( ( U e. ( UnifOn ` X ) /\ P e. X ) /\ A e. V ) -> ( A e. ( N ` P ) <-> E. w e. U A = ( w " { P } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utopustuq.1 | |- N = ( p e. X |-> ran ( v e. U |-> ( v " { p } ) ) ) |
|
| 2 | simpl | |- ( ( p = q /\ v e. U ) -> p = q ) |
|
| 3 | 2 | sneqd | |- ( ( p = q /\ v e. U ) -> { p } = { q } ) |
| 4 | 3 | imaeq2d | |- ( ( p = q /\ v e. U ) -> ( v " { p } ) = ( v " { q } ) ) |
| 5 | 4 | mpteq2dva | |- ( p = q -> ( v e. U |-> ( v " { p } ) ) = ( v e. U |-> ( v " { q } ) ) ) |
| 6 | 5 | rneqd | |- ( p = q -> ran ( v e. U |-> ( v " { p } ) ) = ran ( v e. U |-> ( v " { q } ) ) ) |
| 7 | 6 | cbvmptv | |- ( p e. X |-> ran ( v e. U |-> ( v " { p } ) ) ) = ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) |
| 8 | 1 7 | eqtri | |- N = ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) |
| 9 | simpr2 | |- ( ( U e. ( UnifOn ` X ) /\ ( P e. X /\ q = P /\ v e. U ) ) -> q = P ) |
|
| 10 | 9 | sneqd | |- ( ( U e. ( UnifOn ` X ) /\ ( P e. X /\ q = P /\ v e. U ) ) -> { q } = { P } ) |
| 11 | 10 | imaeq2d | |- ( ( U e. ( UnifOn ` X ) /\ ( P e. X /\ q = P /\ v e. U ) ) -> ( v " { q } ) = ( v " { P } ) ) |
| 12 | 11 | 3anassrs | |- ( ( ( ( U e. ( UnifOn ` X ) /\ P e. X ) /\ q = P ) /\ v e. U ) -> ( v " { q } ) = ( v " { P } ) ) |
| 13 | 12 | mpteq2dva | |- ( ( ( U e. ( UnifOn ` X ) /\ P e. X ) /\ q = P ) -> ( v e. U |-> ( v " { q } ) ) = ( v e. U |-> ( v " { P } ) ) ) |
| 14 | 13 | rneqd | |- ( ( ( U e. ( UnifOn ` X ) /\ P e. X ) /\ q = P ) -> ran ( v e. U |-> ( v " { q } ) ) = ran ( v e. U |-> ( v " { P } ) ) ) |
| 15 | simpr | |- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> P e. X ) |
|
| 16 | mptexg | |- ( U e. ( UnifOn ` X ) -> ( v e. U |-> ( v " { P } ) ) e. _V ) |
|
| 17 | rnexg | |- ( ( v e. U |-> ( v " { P } ) ) e. _V -> ran ( v e. U |-> ( v " { P } ) ) e. _V ) |
|
| 18 | 16 17 | syl | |- ( U e. ( UnifOn ` X ) -> ran ( v e. U |-> ( v " { P } ) ) e. _V ) |
| 19 | 18 | adantr | |- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> ran ( v e. U |-> ( v " { P } ) ) e. _V ) |
| 20 | 8 14 15 19 | fvmptd2 | |- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> ( N ` P ) = ran ( v e. U |-> ( v " { P } ) ) ) |
| 21 | 20 | eleq2d | |- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> ( A e. ( N ` P ) <-> A e. ran ( v e. U |-> ( v " { P } ) ) ) ) |
| 22 | imaeq1 | |- ( v = w -> ( v " { P } ) = ( w " { P } ) ) |
|
| 23 | 22 | cbvmptv | |- ( v e. U |-> ( v " { P } ) ) = ( w e. U |-> ( w " { P } ) ) |
| 24 | 23 | elrnmpt | |- ( A e. V -> ( A e. ran ( v e. U |-> ( v " { P } ) ) <-> E. w e. U A = ( w " { P } ) ) ) |
| 25 | 21 24 | sylan9bb | |- ( ( ( U e. ( UnifOn ` X ) /\ P e. X ) /\ A e. V ) -> ( A e. ( N ` P ) <-> E. w e. U A = ( w " { P } ) ) ) |