This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for uspgrlim . (Contributed by AV, 16-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uspgrlim.v | |- V = ( Vtx ` G ) |
|
| uspgrlim.w | |- W = ( Vtx ` H ) |
||
| uspgrlim.n | |- N = ( G ClNeighbVtx v ) |
||
| uspgrlim.m | |- M = ( H ClNeighbVtx ( F ` v ) ) |
||
| uspgrlim.i | |- I = ( Edg ` G ) |
||
| uspgrlim.j | |- J = ( Edg ` H ) |
||
| uspgrlim.k | |- K = { x e. I | x C_ N } |
||
| uspgrlim.l | |- L = { x e. J | x C_ M } |
||
| Assertion | uspgrlimlem3 | |- ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) -> ( e e. K -> ( f " e ) = ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ` e ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrlim.v | |- V = ( Vtx ` G ) |
|
| 2 | uspgrlim.w | |- W = ( Vtx ` H ) |
|
| 3 | uspgrlim.n | |- N = ( G ClNeighbVtx v ) |
|
| 4 | uspgrlim.m | |- M = ( H ClNeighbVtx ( F ` v ) ) |
|
| 5 | uspgrlim.i | |- I = ( Edg ` G ) |
|
| 6 | uspgrlim.j | |- J = ( Edg ` H ) |
|
| 7 | uspgrlim.k | |- K = { x e. I | x C_ N } |
|
| 8 | uspgrlim.l | |- L = { x e. J | x C_ M } |
|
| 9 | sseq1 | |- ( x = e -> ( x C_ N <-> e C_ N ) ) |
|
| 10 | 9 7 | elrab2 | |- ( e e. K <-> ( e e. I /\ e C_ N ) ) |
| 11 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 12 | 11 | uspgrf1oedg | |- ( G e. USPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) ) |
| 13 | f1ocnv | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) -> `' ( iEdg ` G ) : ( Edg ` G ) -1-1-onto-> dom ( iEdg ` G ) ) |
|
| 14 | f1of | |- ( `' ( iEdg ` G ) : ( Edg ` G ) -1-1-onto-> dom ( iEdg ` G ) -> `' ( iEdg ` G ) : ( Edg ` G ) --> dom ( iEdg ` G ) ) |
|
| 15 | 12 13 14 | 3syl | |- ( G e. USPGraph -> `' ( iEdg ` G ) : ( Edg ` G ) --> dom ( iEdg ` G ) ) |
| 16 | 15 | 3ad2ant1 | |- ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) -> `' ( iEdg ` G ) : ( Edg ` G ) --> dom ( iEdg ` G ) ) |
| 17 | 5 | eleq2i | |- ( e e. I <-> e e. ( Edg ` G ) ) |
| 18 | 17 | biimpi | |- ( e e. I -> e e. ( Edg ` G ) ) |
| 19 | 18 | adantr | |- ( ( e e. I /\ e C_ N ) -> e e. ( Edg ` G ) ) |
| 20 | fvco3 | |- ( ( `' ( iEdg ` G ) : ( Edg ` G ) --> dom ( iEdg ` G ) /\ e e. ( Edg ` G ) ) -> ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ` e ) = ( ( ( iEdg ` H ) o. h ) ` ( `' ( iEdg ` G ) ` e ) ) ) |
|
| 21 | 16 19 20 | syl2an | |- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) /\ ( e e. I /\ e C_ N ) ) -> ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ` e ) = ( ( ( iEdg ` H ) o. h ) ` ( `' ( iEdg ` G ) ` e ) ) ) |
| 22 | f1ocnvdm | |- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) /\ e e. ( Edg ` G ) ) -> ( `' ( iEdg ` G ) ` e ) e. dom ( iEdg ` G ) ) |
|
| 23 | 12 19 22 | syl2an | |- ( ( G e. USPGraph /\ ( e e. I /\ e C_ N ) ) -> ( `' ( iEdg ` G ) ` e ) e. dom ( iEdg ` G ) ) |
| 24 | f1ocnvfv2 | |- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) /\ e e. ( Edg ` G ) ) -> ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) = e ) |
|
| 25 | 12 19 24 | syl2an | |- ( ( G e. USPGraph /\ ( e e. I /\ e C_ N ) ) -> ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) = e ) |
| 26 | simprr | |- ( ( G e. USPGraph /\ ( e e. I /\ e C_ N ) ) -> e C_ N ) |
|
| 27 | 25 26 | eqsstrd | |- ( ( G e. USPGraph /\ ( e e. I /\ e C_ N ) ) -> ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) C_ N ) |
| 28 | 23 27 | jca | |- ( ( G e. USPGraph /\ ( e e. I /\ e C_ N ) ) -> ( ( `' ( iEdg ` G ) ` e ) e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) C_ N ) ) |
| 29 | 28 | adantlr | |- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) /\ ( e e. I /\ e C_ N ) ) -> ( ( `' ( iEdg ` G ) ` e ) e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) C_ N ) ) |
| 30 | fveq2 | |- ( x = ( `' ( iEdg ` G ) ` e ) -> ( ( iEdg ` G ) ` x ) = ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) ) |
|
| 31 | 30 | sseq1d | |- ( x = ( `' ( iEdg ` G ) ` e ) -> ( ( ( iEdg ` G ) ` x ) C_ N <-> ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) C_ N ) ) |
| 32 | 31 | elrab | |- ( ( `' ( iEdg ` G ) ` e ) e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } <-> ( ( `' ( iEdg ` G ) ` e ) e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) C_ N ) ) |
| 33 | 29 32 | sylibr | |- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) /\ ( e e. I /\ e C_ N ) ) -> ( `' ( iEdg ` G ) ` e ) e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) |
| 34 | fveq2 | |- ( i = ( `' ( iEdg ` G ) ` e ) -> ( ( iEdg ` G ) ` i ) = ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) ) |
|
| 35 | 34 | imaeq2d | |- ( i = ( `' ( iEdg ` G ) ` e ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( f " ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) ) ) |
| 36 | 2fveq3 | |- ( i = ( `' ( iEdg ` G ) ` e ) -> ( ( iEdg ` H ) ` ( h ` i ) ) = ( ( iEdg ` H ) ` ( h ` ( `' ( iEdg ` G ) ` e ) ) ) ) |
|
| 37 | 35 36 | eqeq12d | |- ( i = ( `' ( iEdg ` G ) ` e ) -> ( ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) <-> ( f " ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) ) = ( ( iEdg ` H ) ` ( h ` ( `' ( iEdg ` G ) ` e ) ) ) ) ) |
| 38 | 37 | rspcv | |- ( ( `' ( iEdg ` G ) ` e ) e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -> ( A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) -> ( f " ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) ) = ( ( iEdg ` H ) ` ( h ` ( `' ( iEdg ` G ) ` e ) ) ) ) ) |
| 39 | 33 38 | syl | |- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) /\ ( e e. I /\ e C_ N ) ) -> ( A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) -> ( f " ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) ) = ( ( iEdg ` H ) ` ( h ` ( `' ( iEdg ` G ) ` e ) ) ) ) ) |
| 40 | eqcom | |- ( ( f " ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) ) = ( ( iEdg ` H ) ` ( h ` ( `' ( iEdg ` G ) ` e ) ) ) <-> ( ( iEdg ` H ) ` ( h ` ( `' ( iEdg ` G ) ` e ) ) ) = ( f " ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) ) ) |
|
| 41 | f1of | |- ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R -> h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } --> R ) |
|
| 42 | 41 | ad2antlr | |- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) /\ ( e e. I /\ e C_ N ) ) -> h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } --> R ) |
| 43 | 42 33 | fvco3d | |- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) /\ ( e e. I /\ e C_ N ) ) -> ( ( ( iEdg ` H ) o. h ) ` ( `' ( iEdg ` G ) ` e ) ) = ( ( iEdg ` H ) ` ( h ` ( `' ( iEdg ` G ) ` e ) ) ) ) |
| 44 | 43 | eqcomd | |- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) /\ ( e e. I /\ e C_ N ) ) -> ( ( iEdg ` H ) ` ( h ` ( `' ( iEdg ` G ) ` e ) ) ) = ( ( ( iEdg ` H ) o. h ) ` ( `' ( iEdg ` G ) ` e ) ) ) |
| 45 | 12 | adantr | |- ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) ) |
| 46 | 45 19 24 | syl2an | |- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) /\ ( e e. I /\ e C_ N ) ) -> ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) = e ) |
| 47 | 46 | imaeq2d | |- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) /\ ( e e. I /\ e C_ N ) ) -> ( f " ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) ) = ( f " e ) ) |
| 48 | 44 47 | eqeq12d | |- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) /\ ( e e. I /\ e C_ N ) ) -> ( ( ( iEdg ` H ) ` ( h ` ( `' ( iEdg ` G ) ` e ) ) ) = ( f " ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) ) <-> ( ( ( iEdg ` H ) o. h ) ` ( `' ( iEdg ` G ) ` e ) ) = ( f " e ) ) ) |
| 49 | 48 | biimpd | |- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) /\ ( e e. I /\ e C_ N ) ) -> ( ( ( iEdg ` H ) ` ( h ` ( `' ( iEdg ` G ) ` e ) ) ) = ( f " ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) ) -> ( ( ( iEdg ` H ) o. h ) ` ( `' ( iEdg ` G ) ` e ) ) = ( f " e ) ) ) |
| 50 | 40 49 | biimtrid | |- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) /\ ( e e. I /\ e C_ N ) ) -> ( ( f " ( ( iEdg ` G ) ` ( `' ( iEdg ` G ) ` e ) ) ) = ( ( iEdg ` H ) ` ( h ` ( `' ( iEdg ` G ) ` e ) ) ) -> ( ( ( iEdg ` H ) o. h ) ` ( `' ( iEdg ` G ) ` e ) ) = ( f " e ) ) ) |
| 51 | 39 50 | syld | |- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) /\ ( e e. I /\ e C_ N ) ) -> ( A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) -> ( ( ( iEdg ` H ) o. h ) ` ( `' ( iEdg ` G ) ` e ) ) = ( f " e ) ) ) |
| 52 | 51 | ex | |- ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) -> ( ( e e. I /\ e C_ N ) -> ( A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) -> ( ( ( iEdg ` H ) o. h ) ` ( `' ( iEdg ` G ) ` e ) ) = ( f " e ) ) ) ) |
| 53 | 52 | com23 | |- ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R ) -> ( A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) -> ( ( e e. I /\ e C_ N ) -> ( ( ( iEdg ` H ) o. h ) ` ( `' ( iEdg ` G ) ` e ) ) = ( f " e ) ) ) ) |
| 54 | 53 | ex | |- ( G e. USPGraph -> ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R -> ( A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) -> ( ( e e. I /\ e C_ N ) -> ( ( ( iEdg ` H ) o. h ) ` ( `' ( iEdg ` G ) ` e ) ) = ( f " e ) ) ) ) ) |
| 55 | 54 | 3imp1 | |- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) /\ ( e e. I /\ e C_ N ) ) -> ( ( ( iEdg ` H ) o. h ) ` ( `' ( iEdg ` G ) ` e ) ) = ( f " e ) ) |
| 56 | 21 55 | eqtr2d | |- ( ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) /\ ( e e. I /\ e C_ N ) ) -> ( f " e ) = ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ` e ) ) |
| 57 | 56 | ex | |- ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) -> ( ( e e. I /\ e C_ N ) -> ( f " e ) = ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ` e ) ) ) |
| 58 | 10 57 | biimtrid | |- ( ( G e. USPGraph /\ h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> R /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) -> ( e e. K -> ( f " e ) = ( ( ( ( iEdg ` H ) o. h ) o. `' ( iEdg ` G ) ) ` e ) ) ) |