This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for uspgrlim . (Contributed by AV, 16-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uspgrlimlem1.m | |- M = ( H ClNeighbVtx X ) |
|
| uspgrlimlem1.j | |- J = ( Edg ` H ) |
||
| uspgrlimlem1.l | |- L = { x e. J | x C_ M } |
||
| Assertion | uspgrlimlem1 | |- ( H e. USPGraph -> L = ( ( iEdg ` H ) " { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrlimlem1.m | |- M = ( H ClNeighbVtx X ) |
|
| 2 | uspgrlimlem1.j | |- J = ( Edg ` H ) |
|
| 3 | uspgrlimlem1.l | |- L = { x e. J | x C_ M } |
|
| 4 | eqid | |- ( iEdg ` H ) = ( iEdg ` H ) |
|
| 5 | 4 | uspgrf1oedg | |- ( H e. USPGraph -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) ) |
| 6 | f1of | |- ( ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) -> ( iEdg ` H ) : dom ( iEdg ` H ) --> ( Edg ` H ) ) |
|
| 7 | 5 6 | syl | |- ( H e. USPGraph -> ( iEdg ` H ) : dom ( iEdg ` H ) --> ( Edg ` H ) ) |
| 8 | ssrab2 | |- { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } C_ dom ( iEdg ` H ) |
|
| 9 | fimarab | |- ( ( ( iEdg ` H ) : dom ( iEdg ` H ) --> ( Edg ` H ) /\ { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } C_ dom ( iEdg ` H ) ) -> ( ( iEdg ` H ) " { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) = { y e. ( Edg ` H ) | E. z e. { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ( ( iEdg ` H ) ` z ) = y } ) |
|
| 10 | 7 8 9 | sylancl | |- ( H e. USPGraph -> ( ( iEdg ` H ) " { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) = { y e. ( Edg ` H ) | E. z e. { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ( ( iEdg ` H ) ` z ) = y } ) |
| 11 | 2 | eqcomi | |- ( Edg ` H ) = J |
| 12 | 11 | a1i | |- ( H e. USPGraph -> ( Edg ` H ) = J ) |
| 13 | fveq2 | |- ( x = z -> ( ( iEdg ` H ) ` x ) = ( ( iEdg ` H ) ` z ) ) |
|
| 14 | 13 | sseq1d | |- ( x = z -> ( ( ( iEdg ` H ) ` x ) C_ M <-> ( ( iEdg ` H ) ` z ) C_ M ) ) |
| 15 | 14 | rexrab | |- ( E. z e. { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ( ( iEdg ` H ) ` z ) = y <-> E. z e. dom ( iEdg ` H ) ( ( ( iEdg ` H ) ` z ) C_ M /\ ( ( iEdg ` H ) ` z ) = y ) ) |
| 16 | sseq1 | |- ( ( ( iEdg ` H ) ` z ) = y -> ( ( ( iEdg ` H ) ` z ) C_ M <-> y C_ M ) ) |
|
| 17 | 16 | biimpac | |- ( ( ( ( iEdg ` H ) ` z ) C_ M /\ ( ( iEdg ` H ) ` z ) = y ) -> y C_ M ) |
| 18 | 17 | a1i | |- ( ( ( H e. USPGraph /\ y e. ( Edg ` H ) ) /\ z e. dom ( iEdg ` H ) ) -> ( ( ( ( iEdg ` H ) ` z ) C_ M /\ ( ( iEdg ` H ) ` z ) = y ) -> y C_ M ) ) |
| 19 | f1ocnv | |- ( ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) -> `' ( iEdg ` H ) : ( Edg ` H ) -1-1-onto-> dom ( iEdg ` H ) ) |
|
| 20 | f1of | |- ( `' ( iEdg ` H ) : ( Edg ` H ) -1-1-onto-> dom ( iEdg ` H ) -> `' ( iEdg ` H ) : ( Edg ` H ) --> dom ( iEdg ` H ) ) |
|
| 21 | 5 19 20 | 3syl | |- ( H e. USPGraph -> `' ( iEdg ` H ) : ( Edg ` H ) --> dom ( iEdg ` H ) ) |
| 22 | 21 | ffvelcdmda | |- ( ( H e. USPGraph /\ y e. ( Edg ` H ) ) -> ( `' ( iEdg ` H ) ` y ) e. dom ( iEdg ` H ) ) |
| 23 | 22 | adantr | |- ( ( ( H e. USPGraph /\ y e. ( Edg ` H ) ) /\ y C_ M ) -> ( `' ( iEdg ` H ) ` y ) e. dom ( iEdg ` H ) ) |
| 24 | f1ocnvfv2 | |- ( ( ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) /\ y e. ( Edg ` H ) ) -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) = y ) |
|
| 25 | 5 24 | sylan | |- ( ( H e. USPGraph /\ y e. ( Edg ` H ) ) -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) = y ) |
| 26 | 25 | adantr | |- ( ( ( H e. USPGraph /\ y e. ( Edg ` H ) ) /\ y C_ M ) -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) = y ) |
| 27 | sseq1 | |- ( y = ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) -> ( y C_ M <-> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M ) ) |
|
| 28 | 27 | eqcoms | |- ( ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) = y -> ( y C_ M <-> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M ) ) |
| 29 | 28 | biimpcd | |- ( y C_ M -> ( ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) = y -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M ) ) |
| 30 | 29 | adantl | |- ( ( ( H e. USPGraph /\ y e. ( Edg ` H ) ) /\ y C_ M ) -> ( ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) = y -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M ) ) |
| 31 | 30 | ancrd | |- ( ( ( H e. USPGraph /\ y e. ( Edg ` H ) ) /\ y C_ M ) -> ( ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) = y -> ( ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M /\ ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) = y ) ) ) |
| 32 | 26 31 | mpd | |- ( ( ( H e. USPGraph /\ y e. ( Edg ` H ) ) /\ y C_ M ) -> ( ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M /\ ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) = y ) ) |
| 33 | fveq2 | |- ( z = ( `' ( iEdg ` H ) ` y ) -> ( ( iEdg ` H ) ` z ) = ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) ) |
|
| 34 | 33 | sseq1d | |- ( z = ( `' ( iEdg ` H ) ` y ) -> ( ( ( iEdg ` H ) ` z ) C_ M <-> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M ) ) |
| 35 | fveqeq2 | |- ( z = ( `' ( iEdg ` H ) ` y ) -> ( ( ( iEdg ` H ) ` z ) = y <-> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) = y ) ) |
|
| 36 | 34 35 | anbi12d | |- ( z = ( `' ( iEdg ` H ) ` y ) -> ( ( ( ( iEdg ` H ) ` z ) C_ M /\ ( ( iEdg ` H ) ` z ) = y ) <-> ( ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M /\ ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) = y ) ) ) |
| 37 | 18 23 32 36 | rspceb2dv | |- ( ( H e. USPGraph /\ y e. ( Edg ` H ) ) -> ( E. z e. dom ( iEdg ` H ) ( ( ( iEdg ` H ) ` z ) C_ M /\ ( ( iEdg ` H ) ` z ) = y ) <-> y C_ M ) ) |
| 38 | 15 37 | bitrid | |- ( ( H e. USPGraph /\ y e. ( Edg ` H ) ) -> ( E. z e. { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ( ( iEdg ` H ) ` z ) = y <-> y C_ M ) ) |
| 39 | 12 38 | rabeqbidva | |- ( H e. USPGraph -> { y e. ( Edg ` H ) | E. z e. { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ( ( iEdg ` H ) ` z ) = y } = { y e. J | y C_ M } ) |
| 40 | sseq1 | |- ( y = x -> ( y C_ M <-> x C_ M ) ) |
|
| 41 | 40 | cbvrabv | |- { y e. J | y C_ M } = { x e. J | x C_ M } |
| 42 | 41 | a1i | |- ( H e. USPGraph -> { y e. J | y C_ M } = { x e. J | x C_ M } ) |
| 43 | 10 39 42 | 3eqtrrd | |- ( H e. USPGraph -> { x e. J | x C_ M } = ( ( iEdg ` H ) " { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) ) |
| 44 | 3 43 | eqtrid | |- ( H e. USPGraph -> L = ( ( iEdg ` H ) " { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) ) |