This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 4 for uspgrlim . (Contributed by AV, 16-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uspgrlim.v | |- V = ( Vtx ` G ) |
|
| uspgrlim.w | |- W = ( Vtx ` H ) |
||
| uspgrlim.n | |- N = ( G ClNeighbVtx v ) |
||
| uspgrlim.m | |- M = ( H ClNeighbVtx ( F ` v ) ) |
||
| uspgrlim.i | |- I = ( Edg ` G ) |
||
| uspgrlim.j | |- J = ( Edg ` H ) |
||
| uspgrlim.k | |- K = { x e. I | x C_ N } |
||
| uspgrlim.l | |- L = { x e. J | x C_ M } |
||
| Assertion | uspgrlimlem4 | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrlim.v | |- V = ( Vtx ` G ) |
|
| 2 | uspgrlim.w | |- W = ( Vtx ` H ) |
|
| 3 | uspgrlim.n | |- N = ( G ClNeighbVtx v ) |
|
| 4 | uspgrlim.m | |- M = ( H ClNeighbVtx ( F ` v ) ) |
|
| 5 | uspgrlim.i | |- I = ( Edg ` G ) |
|
| 6 | uspgrlim.j | |- J = ( Edg ` H ) |
|
| 7 | uspgrlim.k | |- K = { x e. I | x C_ N } |
|
| 8 | uspgrlim.l | |- L = { x e. J | x C_ M } |
|
| 9 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 10 | 9 | uspgrf1oedg | |- ( G e. USPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) ) |
| 11 | f1of | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( Edg ` G ) ) |
|
| 12 | 10 11 | syl | |- ( G e. USPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( Edg ` G ) ) |
| 13 | 12 | ad2antrr | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( Edg ` G ) ) |
| 14 | simpl | |- ( ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) -> i e. dom ( iEdg ` G ) ) |
|
| 15 | fvco3 | |- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( Edg ` G ) /\ i e. dom ( iEdg ` G ) ) -> ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) = ( ( `' ( iEdg ` H ) o. g ) ` ( ( iEdg ` G ) ` i ) ) ) |
|
| 16 | 15 | fveq2d | |- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( Edg ` G ) /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) = ( ( iEdg ` H ) ` ( ( `' ( iEdg ` H ) o. g ) ` ( ( iEdg ` G ) ` i ) ) ) ) |
| 17 | 13 14 16 | syl2an | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) = ( ( iEdg ` H ) ` ( ( `' ( iEdg ` H ) o. g ) ` ( ( iEdg ` G ) ` i ) ) ) ) |
| 18 | eqid | |- ( iEdg ` H ) = ( iEdg ` H ) |
|
| 19 | 18 | uspgrf1oedg | |- ( H e. USPGraph -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) ) |
| 20 | 19 | ad3antlr | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) ) |
| 21 | ssrab2 | |- { x e. J | x C_ M } C_ J |
|
| 22 | 6 | eqcomi | |- ( Edg ` H ) = J |
| 23 | 21 8 22 | 3sstr4i | |- L C_ ( Edg ` H ) |
| 24 | f1of | |- ( g : K -1-1-onto-> L -> g : K --> L ) |
|
| 25 | 24 | adantr | |- ( ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) -> g : K --> L ) |
| 26 | 25 | adantl | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> g : K --> L ) |
| 27 | 26 | adantr | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> g : K --> L ) |
| 28 | 13 | ffund | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> Fun ( iEdg ` G ) ) |
| 29 | 9 | iedgedg | |- ( ( Fun ( iEdg ` G ) /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` i ) e. ( Edg ` G ) ) |
| 30 | 28 14 29 | syl2an | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` G ) ` i ) e. ( Edg ` G ) ) |
| 31 | 30 5 | eleqtrrdi | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` G ) ` i ) e. I ) |
| 32 | simprr | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` G ) ` i ) C_ N ) |
|
| 33 | sseq1 | |- ( x = ( ( iEdg ` G ) ` i ) -> ( x C_ N <-> ( ( iEdg ` G ) ` i ) C_ N ) ) |
|
| 34 | 33 7 | elrab2 | |- ( ( ( iEdg ` G ) ` i ) e. K <-> ( ( ( iEdg ` G ) ` i ) e. I /\ ( ( iEdg ` G ) ` i ) C_ N ) ) |
| 35 | 31 32 34 | sylanbrc | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` G ) ` i ) e. K ) |
| 36 | 27 35 | ffvelcdmd | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( g ` ( ( iEdg ` G ) ` i ) ) e. L ) |
| 37 | 23 36 | sselid | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( g ` ( ( iEdg ` G ) ` i ) ) e. ( Edg ` H ) ) |
| 38 | f1ocnvfv2 | |- ( ( ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) /\ ( g ` ( ( iEdg ` G ) ` i ) ) e. ( Edg ` H ) ) -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` ( g ` ( ( iEdg ` G ) ` i ) ) ) ) = ( g ` ( ( iEdg ` G ) ` i ) ) ) |
|
| 39 | 20 37 38 | syl2anc | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` ( g ` ( ( iEdg ` G ) ` i ) ) ) ) = ( g ` ( ( iEdg ` G ) ` i ) ) ) |
| 40 | fvco3 | |- ( ( g : K --> L /\ ( ( iEdg ` G ) ` i ) e. K ) -> ( ( `' ( iEdg ` H ) o. g ) ` ( ( iEdg ` G ) ` i ) ) = ( `' ( iEdg ` H ) ` ( g ` ( ( iEdg ` G ) ` i ) ) ) ) |
|
| 41 | 40 | fveq2d | |- ( ( g : K --> L /\ ( ( iEdg ` G ) ` i ) e. K ) -> ( ( iEdg ` H ) ` ( ( `' ( iEdg ` H ) o. g ) ` ( ( iEdg ` G ) ` i ) ) ) = ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` ( g ` ( ( iEdg ` G ) ` i ) ) ) ) ) |
| 42 | 27 35 41 | syl2anc | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` H ) ` ( ( `' ( iEdg ` H ) o. g ) ` ( ( iEdg ` G ) ` i ) ) ) = ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` ( g ` ( ( iEdg ` G ) ` i ) ) ) ) ) |
| 43 | 5 | eqcomi | |- ( Edg ` G ) = I |
| 44 | feq3 | |- ( ( Edg ` G ) = I -> ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( Edg ` G ) <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> I ) ) |
|
| 45 | 43 44 | ax-mp | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( Edg ` G ) <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> I ) |
| 46 | 45 | biimpi | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( Edg ` G ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> I ) |
| 47 | 10 11 46 | 3syl | |- ( G e. USPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> I ) |
| 48 | 47 | ad2antrr | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> I ) |
| 49 | 14 | adantl | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> i e. dom ( iEdg ` G ) ) |
| 50 | 48 49 | ffvelcdmd | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` G ) ` i ) e. I ) |
| 51 | simprr | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` G ) ` i ) C_ N ) |
|
| 52 | 50 51 34 | sylanbrc | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` G ) ` i ) e. K ) |
| 53 | imaeq2 | |- ( e = ( ( iEdg ` G ) ` i ) -> ( f " e ) = ( f " ( ( iEdg ` G ) ` i ) ) ) |
|
| 54 | fveq2 | |- ( e = ( ( iEdg ` G ) ` i ) -> ( g ` e ) = ( g ` ( ( iEdg ` G ) ` i ) ) ) |
|
| 55 | 53 54 | eqeq12d | |- ( e = ( ( iEdg ` G ) ` i ) -> ( ( f " e ) = ( g ` e ) <-> ( f " ( ( iEdg ` G ) ` i ) ) = ( g ` ( ( iEdg ` G ) ` i ) ) ) ) |
| 56 | 55 | rspcv | |- ( ( ( iEdg ` G ) ` i ) e. K -> ( A. e e. K ( f " e ) = ( g ` e ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( g ` ( ( iEdg ` G ) ` i ) ) ) ) |
| 57 | 52 56 | syl | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( A. e e. K ( f " e ) = ( g ` e ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( g ` ( ( iEdg ` G ) ` i ) ) ) ) |
| 58 | 57 | ex | |- ( ( G e. USPGraph /\ H e. USPGraph ) -> ( ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) -> ( A. e e. K ( f " e ) = ( g ` e ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( g ` ( ( iEdg ` G ) ` i ) ) ) ) ) |
| 59 | 58 | com23 | |- ( ( G e. USPGraph /\ H e. USPGraph ) -> ( A. e e. K ( f " e ) = ( g ` e ) -> ( ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( g ` ( ( iEdg ` G ) ` i ) ) ) ) ) |
| 60 | 59 | adantld | |- ( ( G e. USPGraph /\ H e. USPGraph ) -> ( ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) -> ( ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( g ` ( ( iEdg ` G ) ` i ) ) ) ) ) |
| 61 | 60 | imp31 | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( g ` ( ( iEdg ` G ) ` i ) ) ) |
| 62 | 39 42 61 | 3eqtr4d | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( ( iEdg ` H ) ` ( ( `' ( iEdg ` H ) o. g ) ` ( ( iEdg ` G ) ` i ) ) ) = ( f " ( ( iEdg ` G ) ` i ) ) ) |
| 63 | 17 62 | eqtr2d | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) /\ ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) ) |
| 64 | 63 | ex | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) -> ( ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( ( `' ( iEdg ` H ) o. g ) o. ( iEdg ` G ) ) ` i ) ) ) ) |