This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A local isomorphism of graphs is a bijection between their vertices that preserves neighborhoods. Definitions expanded. (Contributed by AV, 29-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isgrlim.v | |- V = ( Vtx ` G ) |
|
| isgrlim.w | |- W = ( Vtx ` H ) |
||
| isgrlim2.n | |- N = ( G ClNeighbVtx v ) |
||
| isgrlim2.m | |- M = ( H ClNeighbVtx ( F ` v ) ) |
||
| isgrlim2.i | |- I = ( iEdg ` G ) |
||
| isgrlim2.j | |- J = ( iEdg ` H ) |
||
| isgrlim2.k | |- K = { x e. dom I | ( I ` x ) C_ N } |
||
| isgrlim2.l | |- L = { x e. dom J | ( J ` x ) C_ M } |
||
| Assertion | isgrlim2 | |- ( ( G e. X /\ H e. Y /\ F e. Z ) -> ( F e. ( G GraphLocIso H ) <-> ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgrlim.v | |- V = ( Vtx ` G ) |
|
| 2 | isgrlim.w | |- W = ( Vtx ` H ) |
|
| 3 | isgrlim2.n | |- N = ( G ClNeighbVtx v ) |
|
| 4 | isgrlim2.m | |- M = ( H ClNeighbVtx ( F ` v ) ) |
|
| 5 | isgrlim2.i | |- I = ( iEdg ` G ) |
|
| 6 | isgrlim2.j | |- J = ( iEdg ` H ) |
|
| 7 | isgrlim2.k | |- K = { x e. dom I | ( I ` x ) C_ N } |
|
| 8 | isgrlim2.l | |- L = { x e. dom J | ( J ` x ) C_ M } |
|
| 9 | 1 2 | isgrlim | |- ( ( G e. X /\ H e. Y /\ F e. Z ) -> ( F e. ( G GraphLocIso H ) <-> ( F : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) ) ) |
| 10 | 3 | eqcomi | |- ( G ClNeighbVtx v ) = N |
| 11 | 10 | oveq2i | |- ( G ISubGr ( G ClNeighbVtx v ) ) = ( G ISubGr N ) |
| 12 | 4 | eqcomi | |- ( H ClNeighbVtx ( F ` v ) ) = M |
| 13 | 12 | oveq2i | |- ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) = ( H ISubGr M ) |
| 14 | 11 13 | breq12i | |- ( ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) <-> ( G ISubGr N ) ~=gr ( H ISubGr M ) ) |
| 15 | 14 | a1i | |- ( ( G e. X /\ H e. Y /\ F e. Z ) -> ( ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) <-> ( G ISubGr N ) ~=gr ( H ISubGr M ) ) ) |
| 16 | 5 6 3 4 7 8 | clnbgrisubgrgrim | |- ( ( G e. X /\ H e. Y ) -> ( ( G ISubGr N ) ~=gr ( H ISubGr M ) <-> E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
| 17 | 16 | 3adant3 | |- ( ( G e. X /\ H e. Y /\ F e. Z ) -> ( ( G ISubGr N ) ~=gr ( H ISubGr M ) <-> E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
| 18 | 15 17 | bitrd | |- ( ( G e. X /\ H e. Y /\ F e. Z ) -> ( ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) <-> E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
| 19 | 18 | ralbidv | |- ( ( G e. X /\ H e. Y /\ F e. Z ) -> ( A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) <-> A. v e. V E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
| 20 | 19 | anbi2d | |- ( ( G e. X /\ H e. Y /\ F e. Z ) -> ( ( F : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) <-> ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) ) |
| 21 | 9 20 | bitrd | |- ( ( G e. X /\ H e. Y /\ F e. Z ) -> ( F e. ( G GraphLocIso H ) <-> ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) ) |