This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a local isomorphism of simple pseudographs. (Contributed by AV, 17-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgrlimprop.v | |- V = ( Vtx ` G ) |
|
| usgrlimprop.w | |- W = ( Vtx ` H ) |
||
| usgrlimprop.n | |- N = ( G ClNeighbVtx v ) |
||
| usgrlimprop.m | |- M = ( H ClNeighbVtx ( F ` v ) ) |
||
| usgrlimprop.i | |- I = ( Edg ` G ) |
||
| usgrlimprop.j | |- J = ( Edg ` H ) |
||
| usgrlimprop.k | |- K = { x e. I | x C_ N } |
||
| usgrlimprop.l | |- L = { x e. J | x C_ M } |
||
| Assertion | usgrlimprop | |- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. ( G GraphLocIso H ) ) -> ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrlimprop.v | |- V = ( Vtx ` G ) |
|
| 2 | usgrlimprop.w | |- W = ( Vtx ` H ) |
|
| 3 | usgrlimprop.n | |- N = ( G ClNeighbVtx v ) |
|
| 4 | usgrlimprop.m | |- M = ( H ClNeighbVtx ( F ` v ) ) |
|
| 5 | usgrlimprop.i | |- I = ( Edg ` G ) |
|
| 6 | usgrlimprop.j | |- J = ( Edg ` H ) |
|
| 7 | usgrlimprop.k | |- K = { x e. I | x C_ N } |
|
| 8 | usgrlimprop.l | |- L = { x e. J | x C_ M } |
|
| 9 | simp3 | |- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. ( G GraphLocIso H ) ) -> F e. ( G GraphLocIso H ) ) |
|
| 10 | 1 2 3 4 5 6 7 8 | uspgrlim | |- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. ( G GraphLocIso H ) ) -> ( F e. ( G GraphLocIso H ) <-> ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) ) ) ) |
| 11 | 9 10 | mpbid | |- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. ( G GraphLocIso H ) ) -> ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. e e. K ( f " e ) = ( g ` e ) ) ) ) ) |