This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The edge function of a simple pseudograph is a bijective function onto the edges of the graph. (Contributed by AV, 2-Jan-2020) (Revised by AV, 15-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | usgrf1o.e | |- E = ( iEdg ` G ) |
|
| Assertion | uspgrf1oedg | |- ( G e. USPGraph -> E : dom E -1-1-onto-> ( Edg ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrf1o.e | |- E = ( iEdg ` G ) |
|
| 2 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 3 | 2 1 | uspgrf | |- ( G e. USPGraph -> E : dom E -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 4 | f1f1orn | |- ( E : dom E -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> E : dom E -1-1-onto-> ran E ) |
|
| 5 | 1 | rneqi | |- ran E = ran ( iEdg ` G ) |
| 6 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
| 7 | 5 6 | eqtr4i | |- ran E = ( Edg ` G ) |
| 8 | f1oeq3 | |- ( ran E = ( Edg ` G ) -> ( E : dom E -1-1-onto-> ran E <-> E : dom E -1-1-onto-> ( Edg ` G ) ) ) |
|
| 9 | 7 8 | ax-mp | |- ( E : dom E -1-1-onto-> ran E <-> E : dom E -1-1-onto-> ( Edg ` G ) ) |
| 10 | 4 9 | sylib | |- ( E : dom E -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> E : dom E -1-1-onto-> ( Edg ` G ) ) |
| 11 | 3 10 | syl | |- ( G e. USPGraph -> E : dom E -1-1-onto-> ( Edg ` G ) ) |