This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for two walks within the same simple pseudograph being the same. It is sufficient that the vertices (in the same order) are identical. (Contributed by AV, 3-Jul-2018) (Revised by AV, 14-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uspgr2wlkeq | |- ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) -> ( A = B <-> ( N = ( # ` ( 1st ` B ) ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anan32 | |- ( ( N = ( # ` ( 1st ` B ) ) /\ A. y e. ( 0 ..^ N ) ( ( 1st ` A ) ` y ) = ( ( 1st ` B ) ` y ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) <-> ( ( N = ( # ` ( 1st ` B ) ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) /\ A. y e. ( 0 ..^ N ) ( ( 1st ` A ) ` y ) = ( ( 1st ` B ) ` y ) ) ) |
|
| 2 | 1 | a1i | |- ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) -> ( ( N = ( # ` ( 1st ` B ) ) /\ A. y e. ( 0 ..^ N ) ( ( 1st ` A ) ` y ) = ( ( 1st ` B ) ` y ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) <-> ( ( N = ( # ` ( 1st ` B ) ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) /\ A. y e. ( 0 ..^ N ) ( ( 1st ` A ) ` y ) = ( ( 1st ` B ) ` y ) ) ) ) |
| 3 | wlkeq | |- ( ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) /\ N = ( # ` ( 1st ` A ) ) ) -> ( A = B <-> ( N = ( # ` ( 1st ` B ) ) /\ A. y e. ( 0 ..^ N ) ( ( 1st ` A ) ` y ) = ( ( 1st ` B ) ` y ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) ) ) |
|
| 4 | 3 | 3expa | |- ( ( ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) -> ( A = B <-> ( N = ( # ` ( 1st ` B ) ) /\ A. y e. ( 0 ..^ N ) ( ( 1st ` A ) ` y ) = ( ( 1st ` B ) ` y ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) ) ) |
| 5 | 4 | 3adant1 | |- ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) -> ( A = B <-> ( N = ( # ` ( 1st ` B ) ) /\ A. y e. ( 0 ..^ N ) ( ( 1st ` A ) ` y ) = ( ( 1st ` B ) ` y ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) ) ) |
| 6 | fzofzp1 | |- ( x e. ( 0 ..^ N ) -> ( x + 1 ) e. ( 0 ... N ) ) |
|
| 7 | 6 | adantl | |- ( ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ x e. ( 0 ..^ N ) ) -> ( x + 1 ) e. ( 0 ... N ) ) |
| 8 | fveq2 | |- ( y = ( x + 1 ) -> ( ( 2nd ` A ) ` y ) = ( ( 2nd ` A ) ` ( x + 1 ) ) ) |
|
| 9 | fveq2 | |- ( y = ( x + 1 ) -> ( ( 2nd ` B ) ` y ) = ( ( 2nd ` B ) ` ( x + 1 ) ) ) |
|
| 10 | 8 9 | eqeq12d | |- ( y = ( x + 1 ) -> ( ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) <-> ( ( 2nd ` A ) ` ( x + 1 ) ) = ( ( 2nd ` B ) ` ( x + 1 ) ) ) ) |
| 11 | 10 | adantl | |- ( ( ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ x e. ( 0 ..^ N ) ) /\ y = ( x + 1 ) ) -> ( ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) <-> ( ( 2nd ` A ) ` ( x + 1 ) ) = ( ( 2nd ` B ) ` ( x + 1 ) ) ) ) |
| 12 | 7 11 | rspcdv | |- ( ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ x e. ( 0 ..^ N ) ) -> ( A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) -> ( ( 2nd ` A ) ` ( x + 1 ) ) = ( ( 2nd ` B ) ` ( x + 1 ) ) ) ) |
| 13 | 12 | impancom | |- ( ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) -> ( x e. ( 0 ..^ N ) -> ( ( 2nd ` A ) ` ( x + 1 ) ) = ( ( 2nd ` B ) ` ( x + 1 ) ) ) ) |
| 14 | 13 | ralrimiv | |- ( ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) -> A. x e. ( 0 ..^ N ) ( ( 2nd ` A ) ` ( x + 1 ) ) = ( ( 2nd ` B ) ` ( x + 1 ) ) ) |
| 15 | fvoveq1 | |- ( y = x -> ( ( 2nd ` A ) ` ( y + 1 ) ) = ( ( 2nd ` A ) ` ( x + 1 ) ) ) |
|
| 16 | fvoveq1 | |- ( y = x -> ( ( 2nd ` B ) ` ( y + 1 ) ) = ( ( 2nd ` B ) ` ( x + 1 ) ) ) |
|
| 17 | 15 16 | eqeq12d | |- ( y = x -> ( ( ( 2nd ` A ) ` ( y + 1 ) ) = ( ( 2nd ` B ) ` ( y + 1 ) ) <-> ( ( 2nd ` A ) ` ( x + 1 ) ) = ( ( 2nd ` B ) ` ( x + 1 ) ) ) ) |
| 18 | 17 | cbvralvw | |- ( A. y e. ( 0 ..^ N ) ( ( 2nd ` A ) ` ( y + 1 ) ) = ( ( 2nd ` B ) ` ( y + 1 ) ) <-> A. x e. ( 0 ..^ N ) ( ( 2nd ` A ) ` ( x + 1 ) ) = ( ( 2nd ` B ) ` ( x + 1 ) ) ) |
| 19 | 14 18 | sylibr | |- ( ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) -> A. y e. ( 0 ..^ N ) ( ( 2nd ` A ) ` ( y + 1 ) ) = ( ( 2nd ` B ) ` ( y + 1 ) ) ) |
| 20 | fzossfz | |- ( 0 ..^ N ) C_ ( 0 ... N ) |
|
| 21 | ssralv | |- ( ( 0 ..^ N ) C_ ( 0 ... N ) -> ( A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) -> A. y e. ( 0 ..^ N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) ) |
|
| 22 | 20 21 | mp1i | |- ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) -> A. y e. ( 0 ..^ N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) ) |
| 23 | r19.26 | |- ( A. y e. ( 0 ..^ N ) ( ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) /\ ( ( 2nd ` A ) ` ( y + 1 ) ) = ( ( 2nd ` B ) ` ( y + 1 ) ) ) <-> ( A. y e. ( 0 ..^ N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) /\ A. y e. ( 0 ..^ N ) ( ( 2nd ` A ) ` ( y + 1 ) ) = ( ( 2nd ` B ) ` ( y + 1 ) ) ) ) |
|
| 24 | preq12 | |- ( ( ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) /\ ( ( 2nd ` A ) ` ( y + 1 ) ) = ( ( 2nd ` B ) ` ( y + 1 ) ) ) -> { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) |
|
| 25 | 24 | a1i | |- ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( ( ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) /\ ( ( 2nd ` A ) ` ( y + 1 ) ) = ( ( 2nd ` B ) ` ( y + 1 ) ) ) -> { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) |
| 26 | 25 | ralimdv | |- ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( A. y e. ( 0 ..^ N ) ( ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) /\ ( ( 2nd ` A ) ` ( y + 1 ) ) = ( ( 2nd ` B ) ` ( y + 1 ) ) ) -> A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) |
| 27 | 23 26 | biimtrrid | |- ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( ( A. y e. ( 0 ..^ N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) /\ A. y e. ( 0 ..^ N ) ( ( 2nd ` A ) ` ( y + 1 ) ) = ( ( 2nd ` B ) ` ( y + 1 ) ) ) -> A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) |
| 28 | 27 | expd | |- ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( A. y e. ( 0 ..^ N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) -> ( A. y e. ( 0 ..^ N ) ( ( 2nd ` A ) ` ( y + 1 ) ) = ( ( 2nd ` B ) ` ( y + 1 ) ) -> A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) ) |
| 29 | 22 28 | syld | |- ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) -> ( A. y e. ( 0 ..^ N ) ( ( 2nd ` A ) ` ( y + 1 ) ) = ( ( 2nd ` B ) ` ( y + 1 ) ) -> A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) ) |
| 30 | 29 | imp | |- ( ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) -> ( A. y e. ( 0 ..^ N ) ( ( 2nd ` A ) ` ( y + 1 ) ) = ( ( 2nd ` B ) ` ( y + 1 ) ) -> A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) |
| 31 | 19 30 | mpd | |- ( ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) -> A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) |
| 32 | 31 | ex | |- ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) -> A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) |
| 33 | uspgrupgr | |- ( G e. USPGraph -> G e. UPGraph ) |
|
| 34 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 35 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 36 | eqid | |- ( 1st ` A ) = ( 1st ` A ) |
|
| 37 | eqid | |- ( 2nd ` A ) = ( 2nd ` A ) |
|
| 38 | 34 35 36 37 | upgrwlkcompim | |- ( ( G e. UPGraph /\ A e. ( Walks ` G ) ) -> ( ( 1st ` A ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` A ) : ( 0 ... ( # ` ( 1st ` A ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) ) |
| 39 | 38 | ex | |- ( G e. UPGraph -> ( A e. ( Walks ` G ) -> ( ( 1st ` A ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` A ) : ( 0 ... ( # ` ( 1st ` A ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) ) ) |
| 40 | 33 39 | syl | |- ( G e. USPGraph -> ( A e. ( Walks ` G ) -> ( ( 1st ` A ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` A ) : ( 0 ... ( # ` ( 1st ` A ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) ) ) |
| 41 | eqid | |- ( 1st ` B ) = ( 1st ` B ) |
|
| 42 | eqid | |- ( 2nd ` B ) = ( 2nd ` B ) |
|
| 43 | 34 35 41 42 | upgrwlkcompim | |- ( ( G e. UPGraph /\ B e. ( Walks ` G ) ) -> ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` B ) : ( 0 ... ( # ` ( 1st ` B ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) |
| 44 | 43 | ex | |- ( G e. UPGraph -> ( B e. ( Walks ` G ) -> ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` B ) : ( 0 ... ( # ` ( 1st ` B ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) ) |
| 45 | 33 44 | syl | |- ( G e. USPGraph -> ( B e. ( Walks ` G ) -> ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` B ) : ( 0 ... ( # ` ( 1st ` B ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) ) |
| 46 | oveq2 | |- ( ( # ` ( 1st ` B ) ) = N -> ( 0 ..^ ( # ` ( 1st ` B ) ) ) = ( 0 ..^ N ) ) |
|
| 47 | 46 | eqcoms | |- ( N = ( # ` ( 1st ` B ) ) -> ( 0 ..^ ( # ` ( 1st ` B ) ) ) = ( 0 ..^ N ) ) |
| 48 | 47 | raleqdv | |- ( N = ( # ` ( 1st ` B ) ) -> ( A. y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } <-> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) |
| 49 | oveq2 | |- ( ( # ` ( 1st ` A ) ) = N -> ( 0 ..^ ( # ` ( 1st ` A ) ) ) = ( 0 ..^ N ) ) |
|
| 50 | 49 | eqcoms | |- ( N = ( # ` ( 1st ` A ) ) -> ( 0 ..^ ( # ` ( 1st ` A ) ) ) = ( 0 ..^ N ) ) |
| 51 | 50 | raleqdv | |- ( N = ( # ` ( 1st ` A ) ) -> ( A. y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } <-> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) ) |
| 52 | 48 51 | bi2anan9r | |- ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( ( A. y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } /\ A. y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) <-> ( A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } /\ A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) ) ) |
| 53 | r19.26 | |- ( A. y e. ( 0 ..^ N ) ( ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } /\ ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) <-> ( A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } /\ A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) ) |
|
| 54 | eqeq2 | |- ( { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> ( ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } <-> ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) |
|
| 55 | eqeq2 | |- ( { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) -> ( ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } <-> ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) |
|
| 56 | 55 | eqcoms | |- ( ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> ( ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } <-> ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) |
| 57 | 56 | biimpd | |- ( ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> ( ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) |
| 58 | 54 57 | biimtrdi | |- ( { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> ( ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } -> ( ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) ) |
| 59 | 58 | com13 | |- ( ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> ( ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } -> ( { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) ) |
| 60 | 59 | imp | |- ( ( ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } /\ ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) -> ( { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) |
| 61 | 60 | ral2imi | |- ( A. y e. ( 0 ..^ N ) ( ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } /\ ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) -> ( A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) |
| 62 | 53 61 | sylbir | |- ( ( A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } /\ A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) -> ( A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) |
| 63 | 52 62 | biimtrdi | |- ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( ( A. y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } /\ A. y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) -> ( A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) ) |
| 64 | 63 | com12 | |- ( ( A. y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } /\ A. y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) -> ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) ) |
| 65 | 64 | ex | |- ( A. y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> ( A. y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } -> ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) ) ) |
| 66 | 65 | 3ad2ant3 | |- ( ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` B ) : ( 0 ... ( # ` ( 1st ` B ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) -> ( A. y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } -> ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) ) ) |
| 67 | 66 | com12 | |- ( A. y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } -> ( ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` B ) : ( 0 ... ( # ` ( 1st ` B ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) -> ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) ) ) |
| 68 | 67 | 3ad2ant3 | |- ( ( ( 1st ` A ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` A ) : ( 0 ... ( # ` ( 1st ` A ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) -> ( ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` B ) : ( 0 ... ( # ` ( 1st ` B ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) -> ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) ) ) |
| 69 | 68 | imp | |- ( ( ( ( 1st ` A ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` A ) : ( 0 ... ( # ` ( 1st ` A ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) /\ ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` B ) : ( 0 ... ( # ` ( 1st ` B ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) -> ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) ) |
| 70 | 69 | expd | |- ( ( ( ( 1st ` A ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` A ) : ( 0 ... ( # ` ( 1st ` A ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) /\ ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` B ) : ( 0 ... ( # ` ( 1st ` B ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) -> ( N = ( # ` ( 1st ` A ) ) -> ( N = ( # ` ( 1st ` B ) ) -> ( A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) ) ) |
| 71 | 70 | a1i | |- ( G e. USPGraph -> ( ( ( ( 1st ` A ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` A ) : ( 0 ... ( # ` ( 1st ` A ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } ) /\ ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` B ) : ( 0 ... ( # ` ( 1st ` B ) ) ) --> ( Vtx ` G ) /\ A. y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } ) ) -> ( N = ( # ` ( 1st ` A ) ) -> ( N = ( # ` ( 1st ` B ) ) -> ( A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) ) ) ) |
| 72 | 40 45 71 | syl2and | |- ( G e. USPGraph -> ( ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) -> ( N = ( # ` ( 1st ` A ) ) -> ( N = ( # ` ( 1st ` B ) ) -> ( A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) ) ) ) |
| 73 | 72 | 3imp1 | |- ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( A. y e. ( 0 ..^ N ) { ( ( 2nd ` A ) ` y ) , ( ( 2nd ` A ) ` ( y + 1 ) ) } = { ( ( 2nd ` B ) ` y ) , ( ( 2nd ` B ) ` ( y + 1 ) ) } -> A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) ) ) |
| 74 | eqcom | |- ( ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) <-> ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) ) |
|
| 75 | 35 | uspgrf1oedg | |- ( G e. USPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) ) |
| 76 | f1of1 | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ( Edg ` G ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( Edg ` G ) ) |
|
| 77 | 75 76 | syl | |- ( G e. USPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( Edg ` G ) ) |
| 78 | eqidd | |- ( G e. USPGraph -> ( iEdg ` G ) = ( iEdg ` G ) ) |
|
| 79 | eqidd | |- ( G e. USPGraph -> dom ( iEdg ` G ) = dom ( iEdg ` G ) ) |
|
| 80 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
| 81 | 80 | eqcomi | |- ran ( iEdg ` G ) = ( Edg ` G ) |
| 82 | 81 | a1i | |- ( G e. USPGraph -> ran ( iEdg ` G ) = ( Edg ` G ) ) |
| 83 | 78 79 82 | f1eq123d | |- ( G e. USPGraph -> ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ran ( iEdg ` G ) <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( Edg ` G ) ) ) |
| 84 | 77 83 | mpbird | |- ( G e. USPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ran ( iEdg ` G ) ) |
| 85 | 84 | 3ad2ant1 | |- ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ran ( iEdg ` G ) ) |
| 86 | 85 | adantr | |- ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ran ( iEdg ` G ) ) |
| 87 | 34 35 36 37 | wlkelwrd | |- ( A e. ( Walks ` G ) -> ( ( 1st ` A ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` A ) : ( 0 ... ( # ` ( 1st ` A ) ) ) --> ( Vtx ` G ) ) ) |
| 88 | 34 35 41 42 | wlkelwrd | |- ( B e. ( Walks ` G ) -> ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` B ) : ( 0 ... ( # ` ( 1st ` B ) ) ) --> ( Vtx ` G ) ) ) |
| 89 | oveq2 | |- ( N = ( # ` ( 1st ` A ) ) -> ( 0 ..^ N ) = ( 0 ..^ ( # ` ( 1st ` A ) ) ) ) |
|
| 90 | 89 | eleq2d | |- ( N = ( # ` ( 1st ` A ) ) -> ( y e. ( 0 ..^ N ) <-> y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ) ) |
| 91 | wrdsymbcl | |- ( ( ( 1st ` A ) e. Word dom ( iEdg ` G ) /\ y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) ) -> ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) ) |
|
| 92 | 91 | expcom | |- ( y e. ( 0 ..^ ( # ` ( 1st ` A ) ) ) -> ( ( 1st ` A ) e. Word dom ( iEdg ` G ) -> ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) ) ) |
| 93 | 90 92 | biimtrdi | |- ( N = ( # ` ( 1st ` A ) ) -> ( y e. ( 0 ..^ N ) -> ( ( 1st ` A ) e. Word dom ( iEdg ` G ) -> ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) ) ) ) |
| 94 | 93 | adantr | |- ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( y e. ( 0 ..^ N ) -> ( ( 1st ` A ) e. Word dom ( iEdg ` G ) -> ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) ) ) ) |
| 95 | 94 | imp | |- ( ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( 1st ` A ) e. Word dom ( iEdg ` G ) -> ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) ) ) |
| 96 | 95 | com12 | |- ( ( 1st ` A ) e. Word dom ( iEdg ` G ) -> ( ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) ) ) |
| 97 | 96 | adantl | |- ( ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 1st ` A ) e. Word dom ( iEdg ` G ) ) -> ( ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) ) ) |
| 98 | oveq2 | |- ( N = ( # ` ( 1st ` B ) ) -> ( 0 ..^ N ) = ( 0 ..^ ( # ` ( 1st ` B ) ) ) ) |
|
| 99 | 98 | eleq2d | |- ( N = ( # ` ( 1st ` B ) ) -> ( y e. ( 0 ..^ N ) <-> y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ) ) |
| 100 | wrdsymbcl | |- ( ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) ) -> ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) |
|
| 101 | 100 | expcom | |- ( y e. ( 0 ..^ ( # ` ( 1st ` B ) ) ) -> ( ( 1st ` B ) e. Word dom ( iEdg ` G ) -> ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) |
| 102 | 99 101 | biimtrdi | |- ( N = ( # ` ( 1st ` B ) ) -> ( y e. ( 0 ..^ N ) -> ( ( 1st ` B ) e. Word dom ( iEdg ` G ) -> ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) ) |
| 103 | 102 | adantl | |- ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( y e. ( 0 ..^ N ) -> ( ( 1st ` B ) e. Word dom ( iEdg ` G ) -> ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) ) |
| 104 | 103 | imp | |- ( ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( 1st ` B ) e. Word dom ( iEdg ` G ) -> ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) |
| 105 | 104 | com12 | |- ( ( 1st ` B ) e. Word dom ( iEdg ` G ) -> ( ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) |
| 106 | 105 | adantr | |- ( ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 1st ` A ) e. Word dom ( iEdg ` G ) ) -> ( ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) |
| 107 | 97 106 | jcad | |- ( ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 1st ` A ) e. Word dom ( iEdg ` G ) ) -> ( ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) /\ ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) ) |
| 108 | 107 | ex | |- ( ( 1st ` B ) e. Word dom ( iEdg ` G ) -> ( ( 1st ` A ) e. Word dom ( iEdg ` G ) -> ( ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) /\ ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) ) ) |
| 109 | 108 | adantr | |- ( ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` B ) : ( 0 ... ( # ` ( 1st ` B ) ) ) --> ( Vtx ` G ) ) -> ( ( 1st ` A ) e. Word dom ( iEdg ` G ) -> ( ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) /\ ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) ) ) |
| 110 | 109 | com12 | |- ( ( 1st ` A ) e. Word dom ( iEdg ` G ) -> ( ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` B ) : ( 0 ... ( # ` ( 1st ` B ) ) ) --> ( Vtx ` G ) ) -> ( ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) /\ ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) ) ) |
| 111 | 110 | adantr | |- ( ( ( 1st ` A ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` A ) : ( 0 ... ( # ` ( 1st ` A ) ) ) --> ( Vtx ` G ) ) -> ( ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` B ) : ( 0 ... ( # ` ( 1st ` B ) ) ) --> ( Vtx ` G ) ) -> ( ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) /\ ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) ) ) |
| 112 | 111 | imp | |- ( ( ( ( 1st ` A ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` A ) : ( 0 ... ( # ` ( 1st ` A ) ) ) --> ( Vtx ` G ) ) /\ ( ( 1st ` B ) e. Word dom ( iEdg ` G ) /\ ( 2nd ` B ) : ( 0 ... ( # ` ( 1st ` B ) ) ) --> ( Vtx ` G ) ) ) -> ( ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) /\ ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) ) |
| 113 | 87 88 112 | syl2an | |- ( ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) -> ( ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) /\ ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) ) |
| 114 | 113 | expd | |- ( ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) -> ( ( N = ( # ` ( 1st ` A ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( y e. ( 0 ..^ N ) -> ( ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) /\ ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) ) ) |
| 115 | 114 | expd | |- ( ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) -> ( N = ( # ` ( 1st ` A ) ) -> ( N = ( # ` ( 1st ` B ) ) -> ( y e. ( 0 ..^ N ) -> ( ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) /\ ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) ) ) ) |
| 116 | 115 | imp | |- ( ( ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) -> ( N = ( # ` ( 1st ` B ) ) -> ( y e. ( 0 ..^ N ) -> ( ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) /\ ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) ) ) |
| 117 | 116 | 3adant1 | |- ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) -> ( N = ( # ` ( 1st ` B ) ) -> ( y e. ( 0 ..^ N ) -> ( ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) /\ ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) ) ) |
| 118 | 117 | imp | |- ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( y e. ( 0 ..^ N ) -> ( ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) /\ ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) ) |
| 119 | 118 | imp | |- ( ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) /\ ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) |
| 120 | f1veqaeq | |- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ran ( iEdg ` G ) /\ ( ( ( 1st ` A ) ` y ) e. dom ( iEdg ` G ) /\ ( ( 1st ` B ) ` y ) e. dom ( iEdg ` G ) ) ) -> ( ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) -> ( ( 1st ` A ) ` y ) = ( ( 1st ` B ) ` y ) ) ) |
|
| 121 | 86 119 120 | syl2an2r | |- ( ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) -> ( ( 1st ` A ) ` y ) = ( ( 1st ` B ) ` y ) ) ) |
| 122 | 74 121 | biimtrid | |- ( ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) /\ y e. ( 0 ..^ N ) ) -> ( ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) -> ( ( 1st ` A ) ` y ) = ( ( 1st ` B ) ` y ) ) ) |
| 123 | 122 | ralimdva | |- ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( A. y e. ( 0 ..^ N ) ( ( iEdg ` G ) ` ( ( 1st ` B ) ` y ) ) = ( ( iEdg ` G ) ` ( ( 1st ` A ) ` y ) ) -> A. y e. ( 0 ..^ N ) ( ( 1st ` A ) ` y ) = ( ( 1st ` B ) ` y ) ) ) |
| 124 | 32 73 123 | 3syld | |- ( ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) /\ N = ( # ` ( 1st ` B ) ) ) -> ( A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) -> A. y e. ( 0 ..^ N ) ( ( 1st ` A ) ` y ) = ( ( 1st ` B ) ` y ) ) ) |
| 125 | 124 | expimpd | |- ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) -> ( ( N = ( # ` ( 1st ` B ) ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) -> A. y e. ( 0 ..^ N ) ( ( 1st ` A ) ` y ) = ( ( 1st ` B ) ` y ) ) ) |
| 126 | 125 | pm4.71d | |- ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) -> ( ( N = ( # ` ( 1st ` B ) ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) <-> ( ( N = ( # ` ( 1st ` B ) ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) /\ A. y e. ( 0 ..^ N ) ( ( 1st ` A ) ` y ) = ( ( 1st ` B ) ` y ) ) ) ) |
| 127 | 2 5 126 | 3bitr4d | |- ( ( G e. USPGraph /\ ( A e. ( Walks ` G ) /\ B e. ( Walks ` G ) ) /\ N = ( # ` ( 1st ` A ) ) ) -> ( A = B <-> ( N = ( # ` ( 1st ` B ) ) /\ A. y e. ( 0 ... N ) ( ( 2nd ` A ) ` y ) = ( ( 2nd ` B ) ` y ) ) ) ) |