This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the values of a one-to-one function for two arguments are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1veqaeq | |- ( ( F : A -1-1-> B /\ ( C e. A /\ D e. A ) ) -> ( ( F ` C ) = ( F ` D ) -> C = D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff13 | |- ( F : A -1-1-> B <-> ( F : A --> B /\ A. c e. A A. d e. A ( ( F ` c ) = ( F ` d ) -> c = d ) ) ) |
|
| 2 | fveqeq2 | |- ( c = C -> ( ( F ` c ) = ( F ` d ) <-> ( F ` C ) = ( F ` d ) ) ) |
|
| 3 | eqeq1 | |- ( c = C -> ( c = d <-> C = d ) ) |
|
| 4 | 2 3 | imbi12d | |- ( c = C -> ( ( ( F ` c ) = ( F ` d ) -> c = d ) <-> ( ( F ` C ) = ( F ` d ) -> C = d ) ) ) |
| 5 | fveq2 | |- ( d = D -> ( F ` d ) = ( F ` D ) ) |
|
| 6 | 5 | eqeq2d | |- ( d = D -> ( ( F ` C ) = ( F ` d ) <-> ( F ` C ) = ( F ` D ) ) ) |
| 7 | eqeq2 | |- ( d = D -> ( C = d <-> C = D ) ) |
|
| 8 | 6 7 | imbi12d | |- ( d = D -> ( ( ( F ` C ) = ( F ` d ) -> C = d ) <-> ( ( F ` C ) = ( F ` D ) -> C = D ) ) ) |
| 9 | 4 8 | rspc2v | |- ( ( C e. A /\ D e. A ) -> ( A. c e. A A. d e. A ( ( F ` c ) = ( F ` d ) -> c = d ) -> ( ( F ` C ) = ( F ` D ) -> C = D ) ) ) |
| 10 | 9 | com12 | |- ( A. c e. A A. d e. A ( ( F ` c ) = ( F ` d ) -> c = d ) -> ( ( C e. A /\ D e. A ) -> ( ( F ` C ) = ( F ` D ) -> C = D ) ) ) |
| 11 | 1 10 | simplbiim | |- ( F : A -1-1-> B -> ( ( C e. A /\ D e. A ) -> ( ( F ` C ) = ( F ` D ) -> C = D ) ) ) |
| 12 | 11 | imp | |- ( ( F : A -1-1-> B /\ ( C e. A /\ D e. A ) ) -> ( ( F ` C ) = ( F ` D ) -> C = D ) ) |