This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality deduction for one-to-one functions. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | f1eq123d.1 | |- ( ph -> F = G ) |
|
| f1eq123d.2 | |- ( ph -> A = B ) |
||
| f1eq123d.3 | |- ( ph -> C = D ) |
||
| Assertion | f1eq123d | |- ( ph -> ( F : A -1-1-> C <-> G : B -1-1-> D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq123d.1 | |- ( ph -> F = G ) |
|
| 2 | f1eq123d.2 | |- ( ph -> A = B ) |
|
| 3 | f1eq123d.3 | |- ( ph -> C = D ) |
|
| 4 | f1eq1 | |- ( F = G -> ( F : A -1-1-> C <-> G : A -1-1-> C ) ) |
|
| 5 | 1 4 | syl | |- ( ph -> ( F : A -1-1-> C <-> G : A -1-1-> C ) ) |
| 6 | f1eq2 | |- ( A = B -> ( G : A -1-1-> C <-> G : B -1-1-> C ) ) |
|
| 7 | 2 6 | syl | |- ( ph -> ( G : A -1-1-> C <-> G : B -1-1-> C ) ) |
| 8 | f1eq3 | |- ( C = D -> ( G : B -1-1-> C <-> G : B -1-1-> D ) ) |
|
| 9 | 3 8 | syl | |- ( ph -> ( G : B -1-1-> C <-> G : B -1-1-> D ) ) |
| 10 | 5 7 9 | 3bitrd | |- ( ph -> ( F : A -1-1-> C <-> G : B -1-1-> D ) ) |