This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implications for the properties of the components of a walk in a pseudograph. (Contributed by Alexander van der Vekens, 23-Jun-2018) (Revised by AV, 14-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrwlkcompim.v | |- V = ( Vtx ` G ) |
|
| upgrwlkcompim.i | |- I = ( iEdg ` G ) |
||
| upgrwlkcompim.1 | |- F = ( 1st ` W ) |
||
| upgrwlkcompim.2 | |- P = ( 2nd ` W ) |
||
| Assertion | upgrwlkcompim | |- ( ( G e. UPGraph /\ W e. ( Walks ` G ) ) -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrwlkcompim.v | |- V = ( Vtx ` G ) |
|
| 2 | upgrwlkcompim.i | |- I = ( iEdg ` G ) |
|
| 3 | upgrwlkcompim.1 | |- F = ( 1st ` W ) |
|
| 4 | upgrwlkcompim.2 | |- P = ( 2nd ` W ) |
|
| 5 | wlkcpr | |- ( W e. ( Walks ` G ) <-> ( 1st ` W ) ( Walks ` G ) ( 2nd ` W ) ) |
|
| 6 | 3 4 | breq12i | |- ( F ( Walks ` G ) P <-> ( 1st ` W ) ( Walks ` G ) ( 2nd ` W ) ) |
| 7 | 5 6 | bitr4i | |- ( W e. ( Walks ` G ) <-> F ( Walks ` G ) P ) |
| 8 | 1 2 | upgriswlk | |- ( G e. UPGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
| 9 | 8 | biimpd | |- ( G e. UPGraph -> ( F ( Walks ` G ) P -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
| 10 | 7 9 | biimtrid | |- ( G e. UPGraph -> ( W e. ( Walks ` G ) -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
| 11 | 10 | imp | |- ( ( G e. UPGraph /\ W e. ( Walks ` G ) ) -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |