This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantifier version of 19.12 . (Contributed by NM, 15-Oct-2003) (Proof shortened by Andrew Salmon, 30-May-2011) Avoid ax-13 , ax-ext . (Revised by Wolf Lammen, 17-Jun-2023) (Proof shortened by Wolf Lammen, 4-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.12 | |- ( E. x e. A A. y e. B ph -> A. y e. B E. x e. A ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex | |- ( E. x e. A A. y e. B ph <-> E. x ( x e. A /\ A. y e. B ph ) ) |
|
| 2 | nfv | |- F/ y x e. A |
|
| 3 | nfra1 | |- F/ y A. y e. B ph |
|
| 4 | 2 3 | nfan | |- F/ y ( x e. A /\ A. y e. B ph ) |
| 5 | 4 | nfex | |- F/ y E. x ( x e. A /\ A. y e. B ph ) |
| 6 | 1 5 | nfxfr | |- F/ y E. x e. A A. y e. B ph |
| 7 | rsp | |- ( A. y e. B ph -> ( y e. B -> ph ) ) |
|
| 8 | 7 | com12 | |- ( y e. B -> ( A. y e. B ph -> ph ) ) |
| 9 | 8 | reximdv | |- ( y e. B -> ( E. x e. A A. y e. B ph -> E. x e. A ph ) ) |
| 10 | 9 | com12 | |- ( E. x e. A A. y e. B ph -> ( y e. B -> E. x e. A ph ) ) |
| 11 | 6 10 | ralrimi | |- ( E. x e. A A. y e. B ph -> A. y e. B E. x e. A ph ) |