This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Open sets in the topology induced by an uniform structure U on X (Contributed by Thierry Arnoux, 30-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elutop | |- ( U e. ( UnifOn ` X ) -> ( A e. ( unifTop ` U ) <-> ( A C_ X /\ A. x e. A E. v e. U ( v " { x } ) C_ A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utopval | |- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) = { a e. ~P X | A. x e. a E. v e. U ( v " { x } ) C_ a } ) |
|
| 2 | 1 | eleq2d | |- ( U e. ( UnifOn ` X ) -> ( A e. ( unifTop ` U ) <-> A e. { a e. ~P X | A. x e. a E. v e. U ( v " { x } ) C_ a } ) ) |
| 3 | sseq2 | |- ( a = A -> ( ( v " { x } ) C_ a <-> ( v " { x } ) C_ A ) ) |
|
| 4 | 3 | rexbidv | |- ( a = A -> ( E. v e. U ( v " { x } ) C_ a <-> E. v e. U ( v " { x } ) C_ A ) ) |
| 5 | 4 | raleqbi1dv | |- ( a = A -> ( A. x e. a E. v e. U ( v " { x } ) C_ a <-> A. x e. A E. v e. U ( v " { x } ) C_ A ) ) |
| 6 | 5 | elrab | |- ( A e. { a e. ~P X | A. x e. a E. v e. U ( v " { x } ) C_ a } <-> ( A e. ~P X /\ A. x e. A E. v e. U ( v " { x } ) C_ A ) ) |
| 7 | 2 6 | bitrdi | |- ( U e. ( UnifOn ` X ) -> ( A e. ( unifTop ` U ) <-> ( A e. ~P X /\ A. x e. A E. v e. U ( v " { x } ) C_ A ) ) ) |
| 8 | elex | |- ( A e. ~P X -> A e. _V ) |
|
| 9 | 8 | a1i | |- ( U e. ( UnifOn ` X ) -> ( A e. ~P X -> A e. _V ) ) |
| 10 | elfvex | |- ( U e. ( UnifOn ` X ) -> X e. _V ) |
|
| 11 | 10 | adantr | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> X e. _V ) |
| 12 | simpr | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> A C_ X ) |
|
| 13 | 11 12 | ssexd | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> A e. _V ) |
| 14 | 13 | ex | |- ( U e. ( UnifOn ` X ) -> ( A C_ X -> A e. _V ) ) |
| 15 | elpwg | |- ( A e. _V -> ( A e. ~P X <-> A C_ X ) ) |
|
| 16 | 15 | a1i | |- ( U e. ( UnifOn ` X ) -> ( A e. _V -> ( A e. ~P X <-> A C_ X ) ) ) |
| 17 | 9 14 16 | pm5.21ndd | |- ( U e. ( UnifOn ` X ) -> ( A e. ~P X <-> A C_ X ) ) |
| 18 | 17 | anbi1d | |- ( U e. ( UnifOn ` X ) -> ( ( A e. ~P X /\ A. x e. A E. v e. U ( v " { x } ) C_ A ) <-> ( A C_ X /\ A. x e. A E. v e. U ( v " { x } ) C_ A ) ) ) |
| 19 | 7 18 | bitrd | |- ( U e. ( UnifOn ` X ) -> ( A e. ( unifTop ` U ) <-> ( A C_ X /\ A. x e. A E. v e. U ( v " { x } ) C_ A ) ) ) |