This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ustuqtop . (Contributed by Thierry Arnoux, 5-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ustimasn | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ P e. X ) -> ( V " { P } ) C_ X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn | |- ( V " { P } ) C_ ran V |
|
| 2 | ustssxp | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> V C_ ( X X. X ) ) |
|
| 3 | 2 | 3adant3 | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ P e. X ) -> V C_ ( X X. X ) ) |
| 4 | rnss | |- ( V C_ ( X X. X ) -> ran V C_ ran ( X X. X ) ) |
|
| 5 | rnxpid | |- ran ( X X. X ) = X |
|
| 6 | 4 5 | sseqtrdi | |- ( V C_ ( X X. X ) -> ran V C_ X ) |
| 7 | 3 6 | syl | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ P e. X ) -> ran V C_ X ) |
| 8 | 1 7 | sstrid | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ P e. X ) -> ( V " { P } ) C_ X ) |