This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a transitive closure is the same as the domain of the original class. (Contributed by Scott Fenton, 26-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmttrcl | |- dom t++ R = dom R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ttrcl | |- t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } |
|
| 2 | 1 | dmeqi | |- dom t++ R = dom { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } |
| 3 | dmopab | |- dom { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } = { x | E. y E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } |
|
| 4 | 2 3 | eqtri | |- dom t++ R = { x | E. y E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } |
| 5 | simpr2l | |- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` (/) ) = x ) |
|
| 6 | fveq2 | |- ( a = (/) -> ( f ` a ) = ( f ` (/) ) ) |
|
| 7 | suceq | |- ( a = (/) -> suc a = suc (/) ) |
|
| 8 | df-1o | |- 1o = suc (/) |
|
| 9 | 7 8 | eqtr4di | |- ( a = (/) -> suc a = 1o ) |
| 10 | 9 | fveq2d | |- ( a = (/) -> ( f ` suc a ) = ( f ` 1o ) ) |
| 11 | 6 10 | breq12d | |- ( a = (/) -> ( ( f ` a ) R ( f ` suc a ) <-> ( f ` (/) ) R ( f ` 1o ) ) ) |
| 12 | simpr3 | |- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> A. a e. n ( f ` a ) R ( f ` suc a ) ) |
|
| 13 | eldif | |- ( n e. ( _om \ 1o ) <-> ( n e. _om /\ -. n e. 1o ) ) |
|
| 14 | 0ex | |- (/) e. _V |
|
| 15 | nnord | |- ( n e. _om -> Ord n ) |
|
| 16 | ordelsuc | |- ( ( (/) e. _V /\ Ord n ) -> ( (/) e. n <-> suc (/) C_ n ) ) |
|
| 17 | 14 15 16 | sylancr | |- ( n e. _om -> ( (/) e. n <-> suc (/) C_ n ) ) |
| 18 | 8 | sseq1i | |- ( 1o C_ n <-> suc (/) C_ n ) |
| 19 | 1on | |- 1o e. On |
|
| 20 | 19 | onordi | |- Ord 1o |
| 21 | ordtri1 | |- ( ( Ord 1o /\ Ord n ) -> ( 1o C_ n <-> -. n e. 1o ) ) |
|
| 22 | 20 15 21 | sylancr | |- ( n e. _om -> ( 1o C_ n <-> -. n e. 1o ) ) |
| 23 | 18 22 | bitr3id | |- ( n e. _om -> ( suc (/) C_ n <-> -. n e. 1o ) ) |
| 24 | 17 23 | bitr2d | |- ( n e. _om -> ( -. n e. 1o <-> (/) e. n ) ) |
| 25 | 24 | biimpa | |- ( ( n e. _om /\ -. n e. 1o ) -> (/) e. n ) |
| 26 | 13 25 | sylbi | |- ( n e. ( _om \ 1o ) -> (/) e. n ) |
| 27 | 26 | adantr | |- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> (/) e. n ) |
| 28 | 11 12 27 | rspcdva | |- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> ( f ` (/) ) R ( f ` 1o ) ) |
| 29 | 5 28 | eqbrtrrd | |- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> x R ( f ` 1o ) ) |
| 30 | vex | |- x e. _V |
|
| 31 | fvex | |- ( f ` 1o ) e. _V |
|
| 32 | 30 31 | breldm | |- ( x R ( f ` 1o ) -> x e. dom R ) |
| 33 | 29 32 | syl | |- ( ( n e. ( _om \ 1o ) /\ ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) -> x e. dom R ) |
| 34 | 33 | ex | |- ( n e. ( _om \ 1o ) -> ( ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> x e. dom R ) ) |
| 35 | 34 | exlimdv | |- ( n e. ( _om \ 1o ) -> ( E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> x e. dom R ) ) |
| 36 | 35 | rexlimiv | |- ( E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> x e. dom R ) |
| 37 | 36 | exlimiv | |- ( E. y E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> x e. dom R ) |
| 38 | 37 | abssi | |- { x | E. y E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } C_ dom R |
| 39 | 4 38 | eqsstri | |- dom t++ R C_ dom R |
| 40 | dmresv | |- dom ( R |` _V ) = dom R |
|
| 41 | relres | |- Rel ( R |` _V ) |
|
| 42 | ssttrcl | |- ( Rel ( R |` _V ) -> ( R |` _V ) C_ t++ ( R |` _V ) ) |
|
| 43 | 41 42 | ax-mp | |- ( R |` _V ) C_ t++ ( R |` _V ) |
| 44 | ttrclresv | |- t++ ( R |` _V ) = t++ R |
|
| 45 | 43 44 | sseqtri | |- ( R |` _V ) C_ t++ R |
| 46 | dmss | |- ( ( R |` _V ) C_ t++ R -> dom ( R |` _V ) C_ dom t++ R ) |
|
| 47 | 45 46 | ax-mp | |- dom ( R |` _V ) C_ dom t++ R |
| 48 | 40 47 | eqsstrri | |- dom R C_ dom t++ R |
| 49 | 39 48 | eqssi | |- dom t++ R = dom R |