This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterization of elements of the transitive closure of a relation. (Contributed by Scott Fenton, 24-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brttrcl2 | |- ( A t++ R B <-> E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = A /\ ( f ` suc n ) = B ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brttrcl | |- ( A t++ R B <-> E. m e. ( _om \ 1o ) E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) |
|
| 2 | df-1o | |- 1o = suc (/) |
|
| 3 | 2 | difeq2i | |- ( _om \ 1o ) = ( _om \ suc (/) ) |
| 4 | 3 | eleq2i | |- ( m e. ( _om \ 1o ) <-> m e. ( _om \ suc (/) ) ) |
| 5 | peano1 | |- (/) e. _om |
|
| 6 | eldifsucnn | |- ( (/) e. _om -> ( m e. ( _om \ suc (/) ) <-> E. n e. ( _om \ (/) ) m = suc n ) ) |
|
| 7 | 5 6 | ax-mp | |- ( m e. ( _om \ suc (/) ) <-> E. n e. ( _om \ (/) ) m = suc n ) |
| 8 | dif0 | |- ( _om \ (/) ) = _om |
|
| 9 | 8 | rexeqi | |- ( E. n e. ( _om \ (/) ) m = suc n <-> E. n e. _om m = suc n ) |
| 10 | 4 7 9 | 3bitri | |- ( m e. ( _om \ 1o ) <-> E. n e. _om m = suc n ) |
| 11 | 10 | anbi1i | |- ( ( m e. ( _om \ 1o ) /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) <-> ( E. n e. _om m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) ) |
| 12 | r19.41v | |- ( E. n e. _om ( m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) <-> ( E. n e. _om m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) ) |
|
| 13 | 11 12 | bitr4i | |- ( ( m e. ( _om \ 1o ) /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) <-> E. n e. _om ( m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) ) |
| 14 | 13 | exbii | |- ( E. m ( m e. ( _om \ 1o ) /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) <-> E. m E. n e. _om ( m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) ) |
| 15 | df-rex | |- ( E. m e. ( _om \ 1o ) E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) <-> E. m ( m e. ( _om \ 1o ) /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) ) |
|
| 16 | rexcom4 | |- ( E. n e. _om E. m ( m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) <-> E. m E. n e. _om ( m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) ) |
|
| 17 | 14 15 16 | 3bitr4i | |- ( E. m e. ( _om \ 1o ) E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) <-> E. n e. _om E. m ( m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) ) |
| 18 | vex | |- n e. _V |
|
| 19 | 18 | sucex | |- suc n e. _V |
| 20 | suceq | |- ( m = suc n -> suc m = suc suc n ) |
|
| 21 | 20 | fneq2d | |- ( m = suc n -> ( f Fn suc m <-> f Fn suc suc n ) ) |
| 22 | fveqeq2 | |- ( m = suc n -> ( ( f ` m ) = B <-> ( f ` suc n ) = B ) ) |
|
| 23 | 22 | anbi2d | |- ( m = suc n -> ( ( ( f ` (/) ) = A /\ ( f ` m ) = B ) <-> ( ( f ` (/) ) = A /\ ( f ` suc n ) = B ) ) ) |
| 24 | raleq | |- ( m = suc n -> ( A. a e. m ( f ` a ) R ( f ` suc a ) <-> A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) |
|
| 25 | 21 23 24 | 3anbi123d | |- ( m = suc n -> ( ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) <-> ( f Fn suc suc n /\ ( ( f ` (/) ) = A /\ ( f ` suc n ) = B ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) ) |
| 26 | 25 | exbidv | |- ( m = suc n -> ( E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) <-> E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = A /\ ( f ` suc n ) = B ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) ) |
| 27 | 19 26 | ceqsexv | |- ( E. m ( m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) <-> E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = A /\ ( f ` suc n ) = B ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) |
| 28 | 27 | rexbii | |- ( E. n e. _om E. m ( m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) <-> E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = A /\ ( f ` suc n ) = B ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) |
| 29 | 1 17 28 | 3bitri | |- ( A t++ R B <-> E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = A /\ ( f ` suc n ) = B ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) |