This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Formerly part of proof of eupth2lem3 : If a trail in a graph G induces a subgraph Z with the vertices V of G and the edges being the edges of the walk, and a subgraph X with the vertices V of G and the edges being the edges of the walk except the last one, and a subgraph Y with the vertices V of G and one edges being the last edge of the walk, then the vertex degree of any vertex U of G within Z is the sum of the vertex degree of U within X and the vertex degree of U within Y . Note that this theorem would not hold for arbitrary walks (if the last edge was identical with a previous edge, the degree of the vertices incident with this edge would not be increased because of this edge). (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 20-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | trlsegvdeg.v | |- V = ( Vtx ` G ) |
|
| trlsegvdeg.i | |- I = ( iEdg ` G ) |
||
| trlsegvdeg.f | |- ( ph -> Fun I ) |
||
| trlsegvdeg.n | |- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
||
| trlsegvdeg.u | |- ( ph -> U e. V ) |
||
| trlsegvdeg.w | |- ( ph -> F ( Trails ` G ) P ) |
||
| trlsegvdeg.vx | |- ( ph -> ( Vtx ` X ) = V ) |
||
| trlsegvdeg.vy | |- ( ph -> ( Vtx ` Y ) = V ) |
||
| trlsegvdeg.vz | |- ( ph -> ( Vtx ` Z ) = V ) |
||
| trlsegvdeg.ix | |- ( ph -> ( iEdg ` X ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
||
| trlsegvdeg.iy | |- ( ph -> ( iEdg ` Y ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
||
| trlsegvdeg.iz | |- ( ph -> ( iEdg ` Z ) = ( I |` ( F " ( 0 ... N ) ) ) ) |
||
| Assertion | trlsegvdeg | |- ( ph -> ( ( VtxDeg ` Z ) ` U ) = ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlsegvdeg.v | |- V = ( Vtx ` G ) |
|
| 2 | trlsegvdeg.i | |- I = ( iEdg ` G ) |
|
| 3 | trlsegvdeg.f | |- ( ph -> Fun I ) |
|
| 4 | trlsegvdeg.n | |- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
|
| 5 | trlsegvdeg.u | |- ( ph -> U e. V ) |
|
| 6 | trlsegvdeg.w | |- ( ph -> F ( Trails ` G ) P ) |
|
| 7 | trlsegvdeg.vx | |- ( ph -> ( Vtx ` X ) = V ) |
|
| 8 | trlsegvdeg.vy | |- ( ph -> ( Vtx ` Y ) = V ) |
|
| 9 | trlsegvdeg.vz | |- ( ph -> ( Vtx ` Z ) = V ) |
|
| 10 | trlsegvdeg.ix | |- ( ph -> ( iEdg ` X ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
|
| 11 | trlsegvdeg.iy | |- ( ph -> ( iEdg ` Y ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
|
| 12 | trlsegvdeg.iz | |- ( ph -> ( iEdg ` Z ) = ( I |` ( F " ( 0 ... N ) ) ) ) |
|
| 13 | eqid | |- ( iEdg ` X ) = ( iEdg ` X ) |
|
| 14 | eqid | |- ( iEdg ` Y ) = ( iEdg ` Y ) |
|
| 15 | eqid | |- ( Vtx ` X ) = ( Vtx ` X ) |
|
| 16 | 8 7 | eqtr4d | |- ( ph -> ( Vtx ` Y ) = ( Vtx ` X ) ) |
| 17 | 9 7 | eqtr4d | |- ( ph -> ( Vtx ` Z ) = ( Vtx ` X ) ) |
| 18 | 1 2 3 4 5 6 7 8 9 10 11 12 | trlsegvdeglem4 | |- ( ph -> dom ( iEdg ` X ) = ( ( F " ( 0 ..^ N ) ) i^i dom I ) ) |
| 19 | 1 2 3 4 5 6 7 8 9 10 11 12 | trlsegvdeglem5 | |- ( ph -> dom ( iEdg ` Y ) = { ( F ` N ) } ) |
| 20 | 18 19 | ineq12d | |- ( ph -> ( dom ( iEdg ` X ) i^i dom ( iEdg ` Y ) ) = ( ( ( F " ( 0 ..^ N ) ) i^i dom I ) i^i { ( F ` N ) } ) ) |
| 21 | fzonel | |- -. N e. ( 0 ..^ N ) |
|
| 22 | 2 | trlf1 | |- ( F ( Trails ` G ) P -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) |
| 23 | 6 22 | syl | |- ( ph -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) |
| 24 | elfzouz2 | |- ( N e. ( 0 ..^ ( # ` F ) ) -> ( # ` F ) e. ( ZZ>= ` N ) ) |
|
| 25 | fzoss2 | |- ( ( # ` F ) e. ( ZZ>= ` N ) -> ( 0 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) |
|
| 26 | 4 24 25 | 3syl | |- ( ph -> ( 0 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 27 | f1elima | |- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ N e. ( 0 ..^ ( # ` F ) ) /\ ( 0 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) -> ( ( F ` N ) e. ( F " ( 0 ..^ N ) ) <-> N e. ( 0 ..^ N ) ) ) |
|
| 28 | 23 4 26 27 | syl3anc | |- ( ph -> ( ( F ` N ) e. ( F " ( 0 ..^ N ) ) <-> N e. ( 0 ..^ N ) ) ) |
| 29 | 21 28 | mtbiri | |- ( ph -> -. ( F ` N ) e. ( F " ( 0 ..^ N ) ) ) |
| 30 | 29 | orcd | |- ( ph -> ( -. ( F ` N ) e. ( F " ( 0 ..^ N ) ) \/ -. ( F ` N ) e. dom I ) ) |
| 31 | ianor | |- ( -. ( ( F ` N ) e. ( F " ( 0 ..^ N ) ) /\ ( F ` N ) e. dom I ) <-> ( -. ( F ` N ) e. ( F " ( 0 ..^ N ) ) \/ -. ( F ` N ) e. dom I ) ) |
|
| 32 | elin | |- ( ( F ` N ) e. ( ( F " ( 0 ..^ N ) ) i^i dom I ) <-> ( ( F ` N ) e. ( F " ( 0 ..^ N ) ) /\ ( F ` N ) e. dom I ) ) |
|
| 33 | 31 32 | xchnxbir | |- ( -. ( F ` N ) e. ( ( F " ( 0 ..^ N ) ) i^i dom I ) <-> ( -. ( F ` N ) e. ( F " ( 0 ..^ N ) ) \/ -. ( F ` N ) e. dom I ) ) |
| 34 | 30 33 | sylibr | |- ( ph -> -. ( F ` N ) e. ( ( F " ( 0 ..^ N ) ) i^i dom I ) ) |
| 35 | disjsn | |- ( ( ( ( F " ( 0 ..^ N ) ) i^i dom I ) i^i { ( F ` N ) } ) = (/) <-> -. ( F ` N ) e. ( ( F " ( 0 ..^ N ) ) i^i dom I ) ) |
|
| 36 | 34 35 | sylibr | |- ( ph -> ( ( ( F " ( 0 ..^ N ) ) i^i dom I ) i^i { ( F ` N ) } ) = (/) ) |
| 37 | 20 36 | eqtrd | |- ( ph -> ( dom ( iEdg ` X ) i^i dom ( iEdg ` Y ) ) = (/) ) |
| 38 | 1 2 3 4 5 6 7 8 9 10 11 12 | trlsegvdeglem2 | |- ( ph -> Fun ( iEdg ` X ) ) |
| 39 | 1 2 3 4 5 6 7 8 9 10 11 12 | trlsegvdeglem3 | |- ( ph -> Fun ( iEdg ` Y ) ) |
| 40 | 5 7 | eleqtrrd | |- ( ph -> U e. ( Vtx ` X ) ) |
| 41 | f1f | |- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I -> F : ( 0 ..^ ( # ` F ) ) --> dom I ) |
|
| 42 | 6 22 41 | 3syl | |- ( ph -> F : ( 0 ..^ ( # ` F ) ) --> dom I ) |
| 43 | 3 42 4 | resunimafz0 | |- ( ph -> ( I |` ( F " ( 0 ... N ) ) ) = ( ( I |` ( F " ( 0 ..^ N ) ) ) u. { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) ) |
| 44 | 10 11 | uneq12d | |- ( ph -> ( ( iEdg ` X ) u. ( iEdg ` Y ) ) = ( ( I |` ( F " ( 0 ..^ N ) ) ) u. { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) ) |
| 45 | 43 12 44 | 3eqtr4d | |- ( ph -> ( iEdg ` Z ) = ( ( iEdg ` X ) u. ( iEdg ` Y ) ) ) |
| 46 | 1 2 3 4 5 6 7 8 9 10 11 12 | trlsegvdeglem6 | |- ( ph -> dom ( iEdg ` X ) e. Fin ) |
| 47 | 1 2 3 4 5 6 7 8 9 10 11 12 | trlsegvdeglem7 | |- ( ph -> dom ( iEdg ` Y ) e. Fin ) |
| 48 | 13 14 15 16 17 37 38 39 40 45 46 47 | vtxdfiun | |- ( ph -> ( ( VtxDeg ` Z ) ` U ) = ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) ) |