This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The enumeration F of a trail <. F , P >. is injective. (Contributed by AV, 20-Feb-2021) (Proof shortened by AV, 29-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | trlf1.i | |- I = ( iEdg ` G ) |
|
| Assertion | trlf1 | |- ( F ( Trails ` G ) P -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlf1.i | |- I = ( iEdg ` G ) |
|
| 2 | istrl | |- ( F ( Trails ` G ) P <-> ( F ( Walks ` G ) P /\ Fun `' F ) ) |
|
| 3 | 1 | wlkf | |- ( F ( Walks ` G ) P -> F e. Word dom I ) |
| 4 | wrdf | |- ( F e. Word dom I -> F : ( 0 ..^ ( # ` F ) ) --> dom I ) |
|
| 5 | df-f1 | |- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I <-> ( F : ( 0 ..^ ( # ` F ) ) --> dom I /\ Fun `' F ) ) |
|
| 6 | 5 | simplbi2 | |- ( F : ( 0 ..^ ( # ` F ) ) --> dom I -> ( Fun `' F -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) ) |
| 7 | 3 4 6 | 3syl | |- ( F ( Walks ` G ) P -> ( Fun `' F -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) ) |
| 8 | 7 | imp | |- ( ( F ( Walks ` G ) P /\ Fun `' F ) -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) |
| 9 | 2 8 | sylbi | |- ( F ( Trails ` G ) P -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) |