This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for trlsegvdeg . (Contributed by AV, 21-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | trlsegvdeg.v | |- V = ( Vtx ` G ) |
|
| trlsegvdeg.i | |- I = ( iEdg ` G ) |
||
| trlsegvdeg.f | |- ( ph -> Fun I ) |
||
| trlsegvdeg.n | |- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
||
| trlsegvdeg.u | |- ( ph -> U e. V ) |
||
| trlsegvdeg.w | |- ( ph -> F ( Trails ` G ) P ) |
||
| trlsegvdeg.vx | |- ( ph -> ( Vtx ` X ) = V ) |
||
| trlsegvdeg.vy | |- ( ph -> ( Vtx ` Y ) = V ) |
||
| trlsegvdeg.vz | |- ( ph -> ( Vtx ` Z ) = V ) |
||
| trlsegvdeg.ix | |- ( ph -> ( iEdg ` X ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
||
| trlsegvdeg.iy | |- ( ph -> ( iEdg ` Y ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
||
| trlsegvdeg.iz | |- ( ph -> ( iEdg ` Z ) = ( I |` ( F " ( 0 ... N ) ) ) ) |
||
| Assertion | trlsegvdeglem6 | |- ( ph -> dom ( iEdg ` X ) e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlsegvdeg.v | |- V = ( Vtx ` G ) |
|
| 2 | trlsegvdeg.i | |- I = ( iEdg ` G ) |
|
| 3 | trlsegvdeg.f | |- ( ph -> Fun I ) |
|
| 4 | trlsegvdeg.n | |- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
|
| 5 | trlsegvdeg.u | |- ( ph -> U e. V ) |
|
| 6 | trlsegvdeg.w | |- ( ph -> F ( Trails ` G ) P ) |
|
| 7 | trlsegvdeg.vx | |- ( ph -> ( Vtx ` X ) = V ) |
|
| 8 | trlsegvdeg.vy | |- ( ph -> ( Vtx ` Y ) = V ) |
|
| 9 | trlsegvdeg.vz | |- ( ph -> ( Vtx ` Z ) = V ) |
|
| 10 | trlsegvdeg.ix | |- ( ph -> ( iEdg ` X ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
|
| 11 | trlsegvdeg.iy | |- ( ph -> ( iEdg ` Y ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
|
| 12 | trlsegvdeg.iz | |- ( ph -> ( iEdg ` Z ) = ( I |` ( F " ( 0 ... N ) ) ) ) |
|
| 13 | 1 2 3 4 5 6 7 8 9 10 11 12 | trlsegvdeglem4 | |- ( ph -> dom ( iEdg ` X ) = ( ( F " ( 0 ..^ N ) ) i^i dom I ) ) |
| 14 | 2 | trlf1 | |- ( F ( Trails ` G ) P -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) |
| 15 | f1fun | |- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I -> Fun F ) |
|
| 16 | 6 14 15 | 3syl | |- ( ph -> Fun F ) |
| 17 | fzofi | |- ( 0 ..^ N ) e. Fin |
|
| 18 | imafi | |- ( ( Fun F /\ ( 0 ..^ N ) e. Fin ) -> ( F " ( 0 ..^ N ) ) e. Fin ) |
|
| 19 | 16 17 18 | sylancl | |- ( ph -> ( F " ( 0 ..^ N ) ) e. Fin ) |
| 20 | infi | |- ( ( F " ( 0 ..^ N ) ) e. Fin -> ( ( F " ( 0 ..^ N ) ) i^i dom I ) e. Fin ) |
|
| 21 | 19 20 | syl | |- ( ph -> ( ( F " ( 0 ..^ N ) ) i^i dom I ) e. Fin ) |
| 22 | 13 21 | eqeltrd | |- ( ph -> dom ( iEdg ` X ) e. Fin ) |