This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: TODO-AV: Revise using F e. Word dom I ? Formerly part of proof of eupth2lem3 : The union of a restriction by an image over an open range of nonnegative integers and a singleton of an ordered pair is a restriction by an image over an interval of nonnegative integers. (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 20-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resunimafz0.i | |- ( ph -> Fun I ) |
|
| resunimafz0.f | |- ( ph -> F : ( 0 ..^ ( # ` F ) ) --> dom I ) |
||
| resunimafz0.n | |- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
||
| Assertion | resunimafz0 | |- ( ph -> ( I |` ( F " ( 0 ... N ) ) ) = ( ( I |` ( F " ( 0 ..^ N ) ) ) u. { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resunimafz0.i | |- ( ph -> Fun I ) |
|
| 2 | resunimafz0.f | |- ( ph -> F : ( 0 ..^ ( # ` F ) ) --> dom I ) |
|
| 3 | resunimafz0.n | |- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
|
| 4 | imaundi | |- ( F " ( ( 0 ..^ N ) u. { N } ) ) = ( ( F " ( 0 ..^ N ) ) u. ( F " { N } ) ) |
|
| 5 | elfzonn0 | |- ( N e. ( 0 ..^ ( # ` F ) ) -> N e. NN0 ) |
|
| 6 | 3 5 | syl | |- ( ph -> N e. NN0 ) |
| 7 | elnn0uz | |- ( N e. NN0 <-> N e. ( ZZ>= ` 0 ) ) |
|
| 8 | 6 7 | sylib | |- ( ph -> N e. ( ZZ>= ` 0 ) ) |
| 9 | fzisfzounsn | |- ( N e. ( ZZ>= ` 0 ) -> ( 0 ... N ) = ( ( 0 ..^ N ) u. { N } ) ) |
|
| 10 | 8 9 | syl | |- ( ph -> ( 0 ... N ) = ( ( 0 ..^ N ) u. { N } ) ) |
| 11 | 10 | imaeq2d | |- ( ph -> ( F " ( 0 ... N ) ) = ( F " ( ( 0 ..^ N ) u. { N } ) ) ) |
| 12 | 2 | ffnd | |- ( ph -> F Fn ( 0 ..^ ( # ` F ) ) ) |
| 13 | fnsnfv | |- ( ( F Fn ( 0 ..^ ( # ` F ) ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> { ( F ` N ) } = ( F " { N } ) ) |
|
| 14 | 12 3 13 | syl2anc | |- ( ph -> { ( F ` N ) } = ( F " { N } ) ) |
| 15 | 14 | uneq2d | |- ( ph -> ( ( F " ( 0 ..^ N ) ) u. { ( F ` N ) } ) = ( ( F " ( 0 ..^ N ) ) u. ( F " { N } ) ) ) |
| 16 | 4 11 15 | 3eqtr4a | |- ( ph -> ( F " ( 0 ... N ) ) = ( ( F " ( 0 ..^ N ) ) u. { ( F ` N ) } ) ) |
| 17 | 16 | reseq2d | |- ( ph -> ( I |` ( F " ( 0 ... N ) ) ) = ( I |` ( ( F " ( 0 ..^ N ) ) u. { ( F ` N ) } ) ) ) |
| 18 | resundi | |- ( I |` ( ( F " ( 0 ..^ N ) ) u. { ( F ` N ) } ) ) = ( ( I |` ( F " ( 0 ..^ N ) ) ) u. ( I |` { ( F ` N ) } ) ) |
|
| 19 | 17 18 | eqtrdi | |- ( ph -> ( I |` ( F " ( 0 ... N ) ) ) = ( ( I |` ( F " ( 0 ..^ N ) ) ) u. ( I |` { ( F ` N ) } ) ) ) |
| 20 | 1 | funfnd | |- ( ph -> I Fn dom I ) |
| 21 | 2 3 | ffvelcdmd | |- ( ph -> ( F ` N ) e. dom I ) |
| 22 | fnressn | |- ( ( I Fn dom I /\ ( F ` N ) e. dom I ) -> ( I |` { ( F ` N ) } ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
|
| 23 | 20 21 22 | syl2anc | |- ( ph -> ( I |` { ( F ` N ) } ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
| 24 | 23 | uneq2d | |- ( ph -> ( ( I |` ( F " ( 0 ..^ N ) ) ) u. ( I |` { ( F ` N ) } ) ) = ( ( I |` ( F " ( 0 ..^ N ) ) ) u. { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) ) |
| 25 | 19 24 | eqtrd | |- ( ph -> ( I |` ( F " ( 0 ... N ) ) ) = ( ( I |` ( F " ( 0 ..^ N ) ) ) u. { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) ) |