This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Formerly part of proof of eupth2lem3 : If a trail in a graph G induces a subgraph Z with the vertices V of G and the edges being the edges of the walk, and a subgraph X with the vertices V of G and the edges being the edges of the walk except the last one, and a subgraph Y with the vertices V of G and one edges being the last edge of the walk, then the vertex degree of any vertex U of G within Z is the sum of the vertex degree of U within X and the vertex degree of U within Y . Note that this theorem would not hold for arbitrary walks (if the last edge was identical with a previous edge, the degree of the vertices incident with this edge would not be increased because of this edge). (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 20-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | trlsegvdeg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| trlsegvdeg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| trlsegvdeg.f | ⊢ ( 𝜑 → Fun 𝐼 ) | ||
| trlsegvdeg.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | ||
| trlsegvdeg.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| trlsegvdeg.w | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | ||
| trlsegvdeg.vx | ⊢ ( 𝜑 → ( Vtx ‘ 𝑋 ) = 𝑉 ) | ||
| trlsegvdeg.vy | ⊢ ( 𝜑 → ( Vtx ‘ 𝑌 ) = 𝑉 ) | ||
| trlsegvdeg.vz | ⊢ ( 𝜑 → ( Vtx ‘ 𝑍 ) = 𝑉 ) | ||
| trlsegvdeg.ix | ⊢ ( 𝜑 → ( iEdg ‘ 𝑋 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) | ||
| trlsegvdeg.iy | ⊢ ( 𝜑 → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) | ||
| trlsegvdeg.iz | ⊢ ( 𝜑 → ( iEdg ‘ 𝑍 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ... 𝑁 ) ) ) ) | ||
| Assertion | trlsegvdeg | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑍 ) ‘ 𝑈 ) = ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlsegvdeg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | trlsegvdeg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | trlsegvdeg.f | ⊢ ( 𝜑 → Fun 𝐼 ) | |
| 4 | trlsegvdeg.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 5 | trlsegvdeg.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 6 | trlsegvdeg.w | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | |
| 7 | trlsegvdeg.vx | ⊢ ( 𝜑 → ( Vtx ‘ 𝑋 ) = 𝑉 ) | |
| 8 | trlsegvdeg.vy | ⊢ ( 𝜑 → ( Vtx ‘ 𝑌 ) = 𝑉 ) | |
| 9 | trlsegvdeg.vz | ⊢ ( 𝜑 → ( Vtx ‘ 𝑍 ) = 𝑉 ) | |
| 10 | trlsegvdeg.ix | ⊢ ( 𝜑 → ( iEdg ‘ 𝑋 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) | |
| 11 | trlsegvdeg.iy | ⊢ ( 𝜑 → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) | |
| 12 | trlsegvdeg.iz | ⊢ ( 𝜑 → ( iEdg ‘ 𝑍 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ... 𝑁 ) ) ) ) | |
| 13 | eqid | ⊢ ( iEdg ‘ 𝑋 ) = ( iEdg ‘ 𝑋 ) | |
| 14 | eqid | ⊢ ( iEdg ‘ 𝑌 ) = ( iEdg ‘ 𝑌 ) | |
| 15 | eqid | ⊢ ( Vtx ‘ 𝑋 ) = ( Vtx ‘ 𝑋 ) | |
| 16 | 8 7 | eqtr4d | ⊢ ( 𝜑 → ( Vtx ‘ 𝑌 ) = ( Vtx ‘ 𝑋 ) ) |
| 17 | 9 7 | eqtr4d | ⊢ ( 𝜑 → ( Vtx ‘ 𝑍 ) = ( Vtx ‘ 𝑋 ) ) |
| 18 | 1 2 3 4 5 6 7 8 9 10 11 12 | trlsegvdeglem4 | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝑋 ) = ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∩ dom 𝐼 ) ) |
| 19 | 1 2 3 4 5 6 7 8 9 10 11 12 | trlsegvdeglem5 | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝑌 ) = { ( 𝐹 ‘ 𝑁 ) } ) |
| 20 | 18 19 | ineq12d | ⊢ ( 𝜑 → ( dom ( iEdg ‘ 𝑋 ) ∩ dom ( iEdg ‘ 𝑌 ) ) = ( ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∩ dom 𝐼 ) ∩ { ( 𝐹 ‘ 𝑁 ) } ) ) |
| 21 | fzonel | ⊢ ¬ 𝑁 ∈ ( 0 ..^ 𝑁 ) | |
| 22 | 2 | trlf1 | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) |
| 23 | 6 22 | syl | ⊢ ( 𝜑 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) |
| 24 | elfzouz2 | ⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 25 | fzoss2 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) → ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 26 | 4 24 25 | 3syl | ⊢ ( 𝜑 → ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 27 | f1elima | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ‘ 𝑁 ) ∈ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ↔ 𝑁 ∈ ( 0 ..^ 𝑁 ) ) ) | |
| 28 | 23 4 26 27 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑁 ) ∈ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ↔ 𝑁 ∈ ( 0 ..^ 𝑁 ) ) ) |
| 29 | 21 28 | mtbiri | ⊢ ( 𝜑 → ¬ ( 𝐹 ‘ 𝑁 ) ∈ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
| 30 | 29 | orcd | ⊢ ( 𝜑 → ( ¬ ( 𝐹 ‘ 𝑁 ) ∈ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∨ ¬ ( 𝐹 ‘ 𝑁 ) ∈ dom 𝐼 ) ) |
| 31 | ianor | ⊢ ( ¬ ( ( 𝐹 ‘ 𝑁 ) ∈ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐹 ‘ 𝑁 ) ∈ dom 𝐼 ) ↔ ( ¬ ( 𝐹 ‘ 𝑁 ) ∈ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∨ ¬ ( 𝐹 ‘ 𝑁 ) ∈ dom 𝐼 ) ) | |
| 32 | elin | ⊢ ( ( 𝐹 ‘ 𝑁 ) ∈ ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∩ dom 𝐼 ) ↔ ( ( 𝐹 ‘ 𝑁 ) ∈ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐹 ‘ 𝑁 ) ∈ dom 𝐼 ) ) | |
| 33 | 31 32 | xchnxbir | ⊢ ( ¬ ( 𝐹 ‘ 𝑁 ) ∈ ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∩ dom 𝐼 ) ↔ ( ¬ ( 𝐹 ‘ 𝑁 ) ∈ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∨ ¬ ( 𝐹 ‘ 𝑁 ) ∈ dom 𝐼 ) ) |
| 34 | 30 33 | sylibr | ⊢ ( 𝜑 → ¬ ( 𝐹 ‘ 𝑁 ) ∈ ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∩ dom 𝐼 ) ) |
| 35 | disjsn | ⊢ ( ( ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∩ dom 𝐼 ) ∩ { ( 𝐹 ‘ 𝑁 ) } ) = ∅ ↔ ¬ ( 𝐹 ‘ 𝑁 ) ∈ ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∩ dom 𝐼 ) ) | |
| 36 | 34 35 | sylibr | ⊢ ( 𝜑 → ( ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∩ dom 𝐼 ) ∩ { ( 𝐹 ‘ 𝑁 ) } ) = ∅ ) |
| 37 | 20 36 | eqtrd | ⊢ ( 𝜑 → ( dom ( iEdg ‘ 𝑋 ) ∩ dom ( iEdg ‘ 𝑌 ) ) = ∅ ) |
| 38 | 1 2 3 4 5 6 7 8 9 10 11 12 | trlsegvdeglem2 | ⊢ ( 𝜑 → Fun ( iEdg ‘ 𝑋 ) ) |
| 39 | 1 2 3 4 5 6 7 8 9 10 11 12 | trlsegvdeglem3 | ⊢ ( 𝜑 → Fun ( iEdg ‘ 𝑌 ) ) |
| 40 | 5 7 | eleqtrrd | ⊢ ( 𝜑 → 𝑈 ∈ ( Vtx ‘ 𝑋 ) ) |
| 41 | f1f | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) | |
| 42 | 6 22 41 | 3syl | ⊢ ( 𝜑 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) |
| 43 | 3 42 4 | resunimafz0 | ⊢ ( 𝜑 → ( 𝐼 ↾ ( 𝐹 “ ( 0 ... 𝑁 ) ) ) = ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ∪ { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) ) |
| 44 | 10 11 | uneq12d | ⊢ ( 𝜑 → ( ( iEdg ‘ 𝑋 ) ∪ ( iEdg ‘ 𝑌 ) ) = ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ∪ { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) ) |
| 45 | 43 12 44 | 3eqtr4d | ⊢ ( 𝜑 → ( iEdg ‘ 𝑍 ) = ( ( iEdg ‘ 𝑋 ) ∪ ( iEdg ‘ 𝑌 ) ) ) |
| 46 | 1 2 3 4 5 6 7 8 9 10 11 12 | trlsegvdeglem6 | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝑋 ) ∈ Fin ) |
| 47 | 1 2 3 4 5 6 7 8 9 10 11 12 | trlsegvdeglem7 | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝑌 ) ∈ Fin ) |
| 48 | 13 14 15 16 17 37 38 39 40 45 46 47 | vtxdfiun | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑍 ) ‘ 𝑈 ) = ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ) |