This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for finite recursion. Without assuming ax-rep , we can show that the domain of the constructed function is a limit ordinal, and hence contains all the finite ordinals. (Contributed by Mario Carneiro, 14-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tfrlem.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| Assertion | tfrlem16 | |- Lim dom recs ( F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| 2 | 1 | tfrlem8 | |- Ord dom recs ( F ) |
| 3 | ordzsl | |- ( Ord dom recs ( F ) <-> ( dom recs ( F ) = (/) \/ E. z e. On dom recs ( F ) = suc z \/ Lim dom recs ( F ) ) ) |
|
| 4 | 2 3 | mpbi | |- ( dom recs ( F ) = (/) \/ E. z e. On dom recs ( F ) = suc z \/ Lim dom recs ( F ) ) |
| 5 | res0 | |- ( recs ( F ) |` (/) ) = (/) |
|
| 6 | 0ex | |- (/) e. _V |
|
| 7 | 5 6 | eqeltri | |- ( recs ( F ) |` (/) ) e. _V |
| 8 | 0elon | |- (/) e. On |
|
| 9 | 1 | tfrlem15 | |- ( (/) e. On -> ( (/) e. dom recs ( F ) <-> ( recs ( F ) |` (/) ) e. _V ) ) |
| 10 | 8 9 | ax-mp | |- ( (/) e. dom recs ( F ) <-> ( recs ( F ) |` (/) ) e. _V ) |
| 11 | 7 10 | mpbir | |- (/) e. dom recs ( F ) |
| 12 | 11 | n0ii | |- -. dom recs ( F ) = (/) |
| 13 | 12 | pm2.21i | |- ( dom recs ( F ) = (/) -> Lim dom recs ( F ) ) |
| 14 | 1 | tfrlem13 | |- -. recs ( F ) e. _V |
| 15 | simpr | |- ( ( z e. On /\ dom recs ( F ) = suc z ) -> dom recs ( F ) = suc z ) |
|
| 16 | df-suc | |- suc z = ( z u. { z } ) |
|
| 17 | 15 16 | eqtrdi | |- ( ( z e. On /\ dom recs ( F ) = suc z ) -> dom recs ( F ) = ( z u. { z } ) ) |
| 18 | 17 | reseq2d | |- ( ( z e. On /\ dom recs ( F ) = suc z ) -> ( recs ( F ) |` dom recs ( F ) ) = ( recs ( F ) |` ( z u. { z } ) ) ) |
| 19 | 1 | tfrlem6 | |- Rel recs ( F ) |
| 20 | resdm | |- ( Rel recs ( F ) -> ( recs ( F ) |` dom recs ( F ) ) = recs ( F ) ) |
|
| 21 | 19 20 | ax-mp | |- ( recs ( F ) |` dom recs ( F ) ) = recs ( F ) |
| 22 | resundi | |- ( recs ( F ) |` ( z u. { z } ) ) = ( ( recs ( F ) |` z ) u. ( recs ( F ) |` { z } ) ) |
|
| 23 | 18 21 22 | 3eqtr3g | |- ( ( z e. On /\ dom recs ( F ) = suc z ) -> recs ( F ) = ( ( recs ( F ) |` z ) u. ( recs ( F ) |` { z } ) ) ) |
| 24 | vex | |- z e. _V |
|
| 25 | 24 | sucid | |- z e. suc z |
| 26 | 25 15 | eleqtrrid | |- ( ( z e. On /\ dom recs ( F ) = suc z ) -> z e. dom recs ( F ) ) |
| 27 | 1 | tfrlem9a | |- ( z e. dom recs ( F ) -> ( recs ( F ) |` z ) e. _V ) |
| 28 | 26 27 | syl | |- ( ( z e. On /\ dom recs ( F ) = suc z ) -> ( recs ( F ) |` z ) e. _V ) |
| 29 | snex | |- { <. z , ( recs ( F ) ` z ) >. } e. _V |
|
| 30 | 1 | tfrlem7 | |- Fun recs ( F ) |
| 31 | funressn | |- ( Fun recs ( F ) -> ( recs ( F ) |` { z } ) C_ { <. z , ( recs ( F ) ` z ) >. } ) |
|
| 32 | 30 31 | ax-mp | |- ( recs ( F ) |` { z } ) C_ { <. z , ( recs ( F ) ` z ) >. } |
| 33 | 29 32 | ssexi | |- ( recs ( F ) |` { z } ) e. _V |
| 34 | unexg | |- ( ( ( recs ( F ) |` z ) e. _V /\ ( recs ( F ) |` { z } ) e. _V ) -> ( ( recs ( F ) |` z ) u. ( recs ( F ) |` { z } ) ) e. _V ) |
|
| 35 | 28 33 34 | sylancl | |- ( ( z e. On /\ dom recs ( F ) = suc z ) -> ( ( recs ( F ) |` z ) u. ( recs ( F ) |` { z } ) ) e. _V ) |
| 36 | 23 35 | eqeltrd | |- ( ( z e. On /\ dom recs ( F ) = suc z ) -> recs ( F ) e. _V ) |
| 37 | 36 | rexlimiva | |- ( E. z e. On dom recs ( F ) = suc z -> recs ( F ) e. _V ) |
| 38 | 14 37 | mto | |- -. E. z e. On dom recs ( F ) = suc z |
| 39 | 38 | pm2.21i | |- ( E. z e. On dom recs ( F ) = suc z -> Lim dom recs ( F ) ) |
| 40 | id | |- ( Lim dom recs ( F ) -> Lim dom recs ( F ) ) |
|
| 41 | 13 39 40 | 3jaoi | |- ( ( dom recs ( F ) = (/) \/ E. z e. On dom recs ( F ) = suc z \/ Lim dom recs ( F ) ) -> Lim dom recs ( F ) ) |
| 42 | 4 41 | ax-mp | |- Lim dom recs ( F ) |