This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for transfinite recursion. Without assuming ax-rep , we can show that all proper initial subsets of recs are sets, while nothing larger is a set. (Contributed by Mario Carneiro, 14-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tfrlem.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| Assertion | tfrlem15 | |- ( B e. On -> ( B e. dom recs ( F ) <-> ( recs ( F ) |` B ) e. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| 2 | 1 | tfrlem9a | |- ( B e. dom recs ( F ) -> ( recs ( F ) |` B ) e. _V ) |
| 3 | 2 | adantl | |- ( ( B e. On /\ B e. dom recs ( F ) ) -> ( recs ( F ) |` B ) e. _V ) |
| 4 | 1 | tfrlem13 | |- -. recs ( F ) e. _V |
| 5 | simpr | |- ( ( B e. On /\ ( recs ( F ) |` B ) e. _V ) -> ( recs ( F ) |` B ) e. _V ) |
|
| 6 | resss | |- ( recs ( F ) |` B ) C_ recs ( F ) |
|
| 7 | 6 | a1i | |- ( dom recs ( F ) C_ B -> ( recs ( F ) |` B ) C_ recs ( F ) ) |
| 8 | 1 | tfrlem6 | |- Rel recs ( F ) |
| 9 | resdm | |- ( Rel recs ( F ) -> ( recs ( F ) |` dom recs ( F ) ) = recs ( F ) ) |
|
| 10 | 8 9 | ax-mp | |- ( recs ( F ) |` dom recs ( F ) ) = recs ( F ) |
| 11 | ssres2 | |- ( dom recs ( F ) C_ B -> ( recs ( F ) |` dom recs ( F ) ) C_ ( recs ( F ) |` B ) ) |
|
| 12 | 10 11 | eqsstrrid | |- ( dom recs ( F ) C_ B -> recs ( F ) C_ ( recs ( F ) |` B ) ) |
| 13 | 7 12 | eqssd | |- ( dom recs ( F ) C_ B -> ( recs ( F ) |` B ) = recs ( F ) ) |
| 14 | 13 | eleq1d | |- ( dom recs ( F ) C_ B -> ( ( recs ( F ) |` B ) e. _V <-> recs ( F ) e. _V ) ) |
| 15 | 5 14 | syl5ibcom | |- ( ( B e. On /\ ( recs ( F ) |` B ) e. _V ) -> ( dom recs ( F ) C_ B -> recs ( F ) e. _V ) ) |
| 16 | 4 15 | mtoi | |- ( ( B e. On /\ ( recs ( F ) |` B ) e. _V ) -> -. dom recs ( F ) C_ B ) |
| 17 | 1 | tfrlem8 | |- Ord dom recs ( F ) |
| 18 | eloni | |- ( B e. On -> Ord B ) |
|
| 19 | 18 | adantr | |- ( ( B e. On /\ ( recs ( F ) |` B ) e. _V ) -> Ord B ) |
| 20 | ordtri1 | |- ( ( Ord dom recs ( F ) /\ Ord B ) -> ( dom recs ( F ) C_ B <-> -. B e. dom recs ( F ) ) ) |
|
| 21 | 20 | con2bid | |- ( ( Ord dom recs ( F ) /\ Ord B ) -> ( B e. dom recs ( F ) <-> -. dom recs ( F ) C_ B ) ) |
| 22 | 17 19 21 | sylancr | |- ( ( B e. On /\ ( recs ( F ) |` B ) e. _V ) -> ( B e. dom recs ( F ) <-> -. dom recs ( F ) C_ B ) ) |
| 23 | 16 22 | mpbird | |- ( ( B e. On /\ ( recs ( F ) |` B ) e. _V ) -> B e. dom recs ( F ) ) |
| 24 | 3 23 | impbida | |- ( B e. On -> ( B e. dom recs ( F ) <-> ( recs ( F ) |` B ) e. _V ) ) |