This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for transfinite recursion. If recs is a set function, then C is acceptable, and thus a subset of recs , but dom C is bigger than dom recs . This is a contradiction, so recs must be a proper class function. (Contributed by NM, 14-Aug-1994) (Revised by Mario Carneiro, 14-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tfrlem.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| Assertion | tfrlem13 | |- -. recs ( F ) e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| 2 | 1 | tfrlem8 | |- Ord dom recs ( F ) |
| 3 | ordirr | |- ( Ord dom recs ( F ) -> -. dom recs ( F ) e. dom recs ( F ) ) |
|
| 4 | 2 3 | ax-mp | |- -. dom recs ( F ) e. dom recs ( F ) |
| 5 | eqid | |- ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) |
|
| 6 | 1 5 | tfrlem12 | |- ( recs ( F ) e. _V -> ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) e. A ) |
| 7 | elssuni | |- ( ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) e. A -> ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) C_ U. A ) |
|
| 8 | 1 | recsfval | |- recs ( F ) = U. A |
| 9 | 7 8 | sseqtrrdi | |- ( ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) e. A -> ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) C_ recs ( F ) ) |
| 10 | dmss | |- ( ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) C_ recs ( F ) -> dom ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) C_ dom recs ( F ) ) |
|
| 11 | 6 9 10 | 3syl | |- ( recs ( F ) e. _V -> dom ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) C_ dom recs ( F ) ) |
| 12 | 2 | a1i | |- ( recs ( F ) e. _V -> Ord dom recs ( F ) ) |
| 13 | dmexg | |- ( recs ( F ) e. _V -> dom recs ( F ) e. _V ) |
|
| 14 | elon2 | |- ( dom recs ( F ) e. On <-> ( Ord dom recs ( F ) /\ dom recs ( F ) e. _V ) ) |
|
| 15 | 12 13 14 | sylanbrc | |- ( recs ( F ) e. _V -> dom recs ( F ) e. On ) |
| 16 | sucidg | |- ( dom recs ( F ) e. On -> dom recs ( F ) e. suc dom recs ( F ) ) |
|
| 17 | 15 16 | syl | |- ( recs ( F ) e. _V -> dom recs ( F ) e. suc dom recs ( F ) ) |
| 18 | 1 5 | tfrlem10 | |- ( dom recs ( F ) e. On -> ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) Fn suc dom recs ( F ) ) |
| 19 | fndm | |- ( ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) Fn suc dom recs ( F ) -> dom ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = suc dom recs ( F ) ) |
|
| 20 | 15 18 19 | 3syl | |- ( recs ( F ) e. _V -> dom ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = suc dom recs ( F ) ) |
| 21 | 17 20 | eleqtrrd | |- ( recs ( F ) e. _V -> dom recs ( F ) e. dom ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) ) |
| 22 | 11 21 | sseldd | |- ( recs ( F ) e. _V -> dom recs ( F ) e. dom recs ( F ) ) |
| 23 | 4 22 | mto | |- -. recs ( F ) e. _V |