This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function restricted to a singleton. (Contributed by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funressn | |- ( Fun F -> ( F |` { B } ) C_ { <. B , ( F ` B ) >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn | |- ( Fun F <-> F Fn dom F ) |
|
| 2 | fnressn | |- ( ( F Fn dom F /\ B e. dom F ) -> ( F |` { B } ) = { <. B , ( F ` B ) >. } ) |
|
| 3 | 1 2 | sylanb | |- ( ( Fun F /\ B e. dom F ) -> ( F |` { B } ) = { <. B , ( F ` B ) >. } ) |
| 4 | eqimss | |- ( ( F |` { B } ) = { <. B , ( F ` B ) >. } -> ( F |` { B } ) C_ { <. B , ( F ` B ) >. } ) |
|
| 5 | 3 4 | syl | |- ( ( Fun F /\ B e. dom F ) -> ( F |` { B } ) C_ { <. B , ( F ` B ) >. } ) |
| 6 | disjsn | |- ( ( dom F i^i { B } ) = (/) <-> -. B e. dom F ) |
|
| 7 | fnresdisj | |- ( F Fn dom F -> ( ( dom F i^i { B } ) = (/) <-> ( F |` { B } ) = (/) ) ) |
|
| 8 | 1 7 | sylbi | |- ( Fun F -> ( ( dom F i^i { B } ) = (/) <-> ( F |` { B } ) = (/) ) ) |
| 9 | 6 8 | bitr3id | |- ( Fun F -> ( -. B e. dom F <-> ( F |` { B } ) = (/) ) ) |
| 10 | 9 | biimpa | |- ( ( Fun F /\ -. B e. dom F ) -> ( F |` { B } ) = (/) ) |
| 11 | 0ss | |- (/) C_ { <. B , ( F ` B ) >. } |
|
| 12 | 10 11 | eqsstrdi | |- ( ( Fun F /\ -. B e. dom F ) -> ( F |` { B } ) C_ { <. B , ( F ` B ) >. } ) |
| 13 | 5 12 | pm2.61dan | |- ( Fun F -> ( F |` { B } ) C_ { <. B , ( F ` B ) >. } ) |