This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for transfinite recursion. The union of all acceptable functions is a function. (Contributed by NM, 9-Aug-1994) (Revised by Mario Carneiro, 24-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tfrlem.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| Assertion | tfrlem7 | |- Fun recs ( F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| 2 | 1 | tfrlem6 | |- Rel recs ( F ) |
| 3 | 1 | recsfval | |- recs ( F ) = U. A |
| 4 | 3 | eleq2i | |- ( <. x , u >. e. recs ( F ) <-> <. x , u >. e. U. A ) |
| 5 | eluni | |- ( <. x , u >. e. U. A <-> E. g ( <. x , u >. e. g /\ g e. A ) ) |
|
| 6 | 4 5 | bitri | |- ( <. x , u >. e. recs ( F ) <-> E. g ( <. x , u >. e. g /\ g e. A ) ) |
| 7 | 3 | eleq2i | |- ( <. x , v >. e. recs ( F ) <-> <. x , v >. e. U. A ) |
| 8 | eluni | |- ( <. x , v >. e. U. A <-> E. h ( <. x , v >. e. h /\ h e. A ) ) |
|
| 9 | 7 8 | bitri | |- ( <. x , v >. e. recs ( F ) <-> E. h ( <. x , v >. e. h /\ h e. A ) ) |
| 10 | 6 9 | anbi12i | |- ( ( <. x , u >. e. recs ( F ) /\ <. x , v >. e. recs ( F ) ) <-> ( E. g ( <. x , u >. e. g /\ g e. A ) /\ E. h ( <. x , v >. e. h /\ h e. A ) ) ) |
| 11 | exdistrv | |- ( E. g E. h ( ( <. x , u >. e. g /\ g e. A ) /\ ( <. x , v >. e. h /\ h e. A ) ) <-> ( E. g ( <. x , u >. e. g /\ g e. A ) /\ E. h ( <. x , v >. e. h /\ h e. A ) ) ) |
|
| 12 | 10 11 | bitr4i | |- ( ( <. x , u >. e. recs ( F ) /\ <. x , v >. e. recs ( F ) ) <-> E. g E. h ( ( <. x , u >. e. g /\ g e. A ) /\ ( <. x , v >. e. h /\ h e. A ) ) ) |
| 13 | df-br | |- ( x g u <-> <. x , u >. e. g ) |
|
| 14 | df-br | |- ( x h v <-> <. x , v >. e. h ) |
|
| 15 | 13 14 | anbi12i | |- ( ( x g u /\ x h v ) <-> ( <. x , u >. e. g /\ <. x , v >. e. h ) ) |
| 16 | 1 | tfrlem5 | |- ( ( g e. A /\ h e. A ) -> ( ( x g u /\ x h v ) -> u = v ) ) |
| 17 | 16 | impcom | |- ( ( ( x g u /\ x h v ) /\ ( g e. A /\ h e. A ) ) -> u = v ) |
| 18 | 15 17 | sylanbr | |- ( ( ( <. x , u >. e. g /\ <. x , v >. e. h ) /\ ( g e. A /\ h e. A ) ) -> u = v ) |
| 19 | 18 | an4s | |- ( ( ( <. x , u >. e. g /\ g e. A ) /\ ( <. x , v >. e. h /\ h e. A ) ) -> u = v ) |
| 20 | 19 | exlimivv | |- ( E. g E. h ( ( <. x , u >. e. g /\ g e. A ) /\ ( <. x , v >. e. h /\ h e. A ) ) -> u = v ) |
| 21 | 12 20 | sylbi | |- ( ( <. x , u >. e. recs ( F ) /\ <. x , v >. e. recs ( F ) ) -> u = v ) |
| 22 | 21 | ax-gen | |- A. v ( ( <. x , u >. e. recs ( F ) /\ <. x , v >. e. recs ( F ) ) -> u = v ) |
| 23 | 22 | gen2 | |- A. x A. u A. v ( ( <. x , u >. e. recs ( F ) /\ <. x , v >. e. recs ( F ) ) -> u = v ) |
| 24 | dffun4 | |- ( Fun recs ( F ) <-> ( Rel recs ( F ) /\ A. x A. u A. v ( ( <. x , u >. e. recs ( F ) /\ <. x , v >. e. recs ( F ) ) -> u = v ) ) ) |
|
| 25 | 2 23 24 | mpbir2an | |- Fun recs ( F ) |