This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for transfinite recursion. The domain of recs is an ordinal. (Contributed by NM, 14-Aug-1994) (Proof shortened by Alan Sare, 11-Mar-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tfrlem.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| Assertion | tfrlem8 | |- Ord dom recs ( F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| 2 | 1 | tfrlem3 | |- A = { g | E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) } |
| 3 | 2 | eqabri | |- ( g e. A <-> E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) ) |
| 4 | fndm | |- ( g Fn z -> dom g = z ) |
|
| 5 | 4 | adantr | |- ( ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) -> dom g = z ) |
| 6 | 5 | eleq1d | |- ( ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) -> ( dom g e. On <-> z e. On ) ) |
| 7 | 6 | biimprcd | |- ( z e. On -> ( ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) -> dom g e. On ) ) |
| 8 | 7 | rexlimiv | |- ( E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) -> dom g e. On ) |
| 9 | 3 8 | sylbi | |- ( g e. A -> dom g e. On ) |
| 10 | eleq1a | |- ( dom g e. On -> ( z = dom g -> z e. On ) ) |
|
| 11 | 9 10 | syl | |- ( g e. A -> ( z = dom g -> z e. On ) ) |
| 12 | 11 | rexlimiv | |- ( E. g e. A z = dom g -> z e. On ) |
| 13 | 12 | abssi | |- { z | E. g e. A z = dom g } C_ On |
| 14 | ssorduni | |- ( { z | E. g e. A z = dom g } C_ On -> Ord U. { z | E. g e. A z = dom g } ) |
|
| 15 | 13 14 | ax-mp | |- Ord U. { z | E. g e. A z = dom g } |
| 16 | 1 | recsfval | |- recs ( F ) = U. A |
| 17 | 16 | dmeqi | |- dom recs ( F ) = dom U. A |
| 18 | dmuni | |- dom U. A = U_ g e. A dom g |
|
| 19 | vex | |- g e. _V |
|
| 20 | 19 | dmex | |- dom g e. _V |
| 21 | 20 | dfiun2 | |- U_ g e. A dom g = U. { z | E. g e. A z = dom g } |
| 22 | 17 18 21 | 3eqtri | |- dom recs ( F ) = U. { z | E. g e. A z = dom g } |
| 23 | ordeq | |- ( dom recs ( F ) = U. { z | E. g e. A z = dom g } -> ( Ord dom recs ( F ) <-> Ord U. { z | E. g e. A z = dom g } ) ) |
|
| 24 | 22 23 | ax-mp | |- ( Ord dom recs ( F ) <-> Ord U. { z | E. g e. A z = dom g } ) |
| 25 | 15 24 | mpbir | |- Ord dom recs ( F ) |