This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for transfinite recursion. Without using ax-rep , show that all the restrictions of recs are sets. (Contributed by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tfrlem.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| Assertion | tfrlem9a | |- ( B e. dom recs ( F ) -> ( recs ( F ) |` B ) e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| 2 | 1 | tfrlem7 | |- Fun recs ( F ) |
| 3 | funfvop | |- ( ( Fun recs ( F ) /\ B e. dom recs ( F ) ) -> <. B , ( recs ( F ) ` B ) >. e. recs ( F ) ) |
|
| 4 | 2 3 | mpan | |- ( B e. dom recs ( F ) -> <. B , ( recs ( F ) ` B ) >. e. recs ( F ) ) |
| 5 | 1 | recsfval | |- recs ( F ) = U. A |
| 6 | 5 | eleq2i | |- ( <. B , ( recs ( F ) ` B ) >. e. recs ( F ) <-> <. B , ( recs ( F ) ` B ) >. e. U. A ) |
| 7 | eluni | |- ( <. B , ( recs ( F ) ` B ) >. e. U. A <-> E. g ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) |
|
| 8 | 6 7 | bitri | |- ( <. B , ( recs ( F ) ` B ) >. e. recs ( F ) <-> E. g ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) |
| 9 | 4 8 | sylib | |- ( B e. dom recs ( F ) -> E. g ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) |
| 10 | simprr | |- ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) -> g e. A ) |
|
| 11 | vex | |- g e. _V |
|
| 12 | 1 11 | tfrlem3a | |- ( g e. A <-> E. z e. On ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) ) |
| 13 | 10 12 | sylib | |- ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) -> E. z e. On ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) ) |
| 14 | 2 | a1i | |- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> Fun recs ( F ) ) |
| 15 | simplrr | |- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> g e. A ) |
|
| 16 | elssuni | |- ( g e. A -> g C_ U. A ) |
|
| 17 | 15 16 | syl | |- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> g C_ U. A ) |
| 18 | 17 5 | sseqtrrdi | |- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> g C_ recs ( F ) ) |
| 19 | fndm | |- ( g Fn z -> dom g = z ) |
|
| 20 | 19 | ad2antll | |- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> dom g = z ) |
| 21 | simprl | |- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> z e. On ) |
|
| 22 | 20 21 | eqeltrd | |- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> dom g e. On ) |
| 23 | eloni | |- ( dom g e. On -> Ord dom g ) |
|
| 24 | 22 23 | syl | |- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> Ord dom g ) |
| 25 | simpll | |- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> B e. dom recs ( F ) ) |
|
| 26 | fvexd | |- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> ( recs ( F ) ` B ) e. _V ) |
|
| 27 | simplrl | |- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> <. B , ( recs ( F ) ` B ) >. e. g ) |
|
| 28 | df-br | |- ( B g ( recs ( F ) ` B ) <-> <. B , ( recs ( F ) ` B ) >. e. g ) |
|
| 29 | 27 28 | sylibr | |- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> B g ( recs ( F ) ` B ) ) |
| 30 | breldmg | |- ( ( B e. dom recs ( F ) /\ ( recs ( F ) ` B ) e. _V /\ B g ( recs ( F ) ` B ) ) -> B e. dom g ) |
|
| 31 | 25 26 29 30 | syl3anc | |- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> B e. dom g ) |
| 32 | ordelss | |- ( ( Ord dom g /\ B e. dom g ) -> B C_ dom g ) |
|
| 33 | 24 31 32 | syl2anc | |- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> B C_ dom g ) |
| 34 | fun2ssres | |- ( ( Fun recs ( F ) /\ g C_ recs ( F ) /\ B C_ dom g ) -> ( recs ( F ) |` B ) = ( g |` B ) ) |
|
| 35 | 14 18 33 34 | syl3anc | |- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> ( recs ( F ) |` B ) = ( g |` B ) ) |
| 36 | 11 | resex | |- ( g |` B ) e. _V |
| 37 | 36 | a1i | |- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> ( g |` B ) e. _V ) |
| 38 | 35 37 | eqeltrd | |- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> ( recs ( F ) |` B ) e. _V ) |
| 39 | 38 | expr | |- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ z e. On ) -> ( g Fn z -> ( recs ( F ) |` B ) e. _V ) ) |
| 40 | 39 | adantrd | |- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ z e. On ) -> ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) -> ( recs ( F ) |` B ) e. _V ) ) |
| 41 | 40 | rexlimdva | |- ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) -> ( E. z e. On ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) -> ( recs ( F ) |` B ) e. _V ) ) |
| 42 | 13 41 | mpd | |- ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) -> ( recs ( F ) |` B ) e. _V ) |
| 43 | 9 42 | exlimddv | |- ( B e. dom recs ( F ) -> ( recs ( F ) |` B ) e. _V ) |