This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The hyperbolic tangent of a real number is upper bounded by 1 . (Contributed by Mario Carneiro, 4-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tanhlt1 | |- ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) < 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | |- _i e. CC |
|
| 2 | recn | |- ( A e. RR -> A e. CC ) |
|
| 3 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 4 | 1 2 3 | sylancr | |- ( A e. RR -> ( _i x. A ) e. CC ) |
| 5 | rpcoshcl | |- ( A e. RR -> ( cos ` ( _i x. A ) ) e. RR+ ) |
|
| 6 | 5 | rpne0d | |- ( A e. RR -> ( cos ` ( _i x. A ) ) =/= 0 ) |
| 7 | tanval | |- ( ( ( _i x. A ) e. CC /\ ( cos ` ( _i x. A ) ) =/= 0 ) -> ( tan ` ( _i x. A ) ) = ( ( sin ` ( _i x. A ) ) / ( cos ` ( _i x. A ) ) ) ) |
|
| 8 | 4 6 7 | syl2anc | |- ( A e. RR -> ( tan ` ( _i x. A ) ) = ( ( sin ` ( _i x. A ) ) / ( cos ` ( _i x. A ) ) ) ) |
| 9 | 8 | oveq1d | |- ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) = ( ( ( sin ` ( _i x. A ) ) / ( cos ` ( _i x. A ) ) ) / _i ) ) |
| 10 | 4 | sincld | |- ( A e. RR -> ( sin ` ( _i x. A ) ) e. CC ) |
| 11 | recoshcl | |- ( A e. RR -> ( cos ` ( _i x. A ) ) e. RR ) |
|
| 12 | 11 | recnd | |- ( A e. RR -> ( cos ` ( _i x. A ) ) e. CC ) |
| 13 | 1 | a1i | |- ( A e. RR -> _i e. CC ) |
| 14 | ine0 | |- _i =/= 0 |
|
| 15 | 14 | a1i | |- ( A e. RR -> _i =/= 0 ) |
| 16 | 10 12 13 6 15 | divdiv32d | |- ( A e. RR -> ( ( ( sin ` ( _i x. A ) ) / ( cos ` ( _i x. A ) ) ) / _i ) = ( ( ( sin ` ( _i x. A ) ) / _i ) / ( cos ` ( _i x. A ) ) ) ) |
| 17 | sinhval | |- ( A e. CC -> ( ( sin ` ( _i x. A ) ) / _i ) = ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) |
|
| 18 | 2 17 | syl | |- ( A e. RR -> ( ( sin ` ( _i x. A ) ) / _i ) = ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) |
| 19 | coshval | |- ( A e. CC -> ( cos ` ( _i x. A ) ) = ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) |
|
| 20 | 2 19 | syl | |- ( A e. RR -> ( cos ` ( _i x. A ) ) = ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) |
| 21 | 18 20 | oveq12d | |- ( A e. RR -> ( ( ( sin ` ( _i x. A ) ) / _i ) / ( cos ` ( _i x. A ) ) ) = ( ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) / ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) ) |
| 22 | 9 16 21 | 3eqtrd | |- ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) = ( ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) / ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) ) |
| 23 | reefcl | |- ( A e. RR -> ( exp ` A ) e. RR ) |
|
| 24 | renegcl | |- ( A e. RR -> -u A e. RR ) |
|
| 25 | 24 | reefcld | |- ( A e. RR -> ( exp ` -u A ) e. RR ) |
| 26 | 23 25 | resubcld | |- ( A e. RR -> ( ( exp ` A ) - ( exp ` -u A ) ) e. RR ) |
| 27 | 26 | recnd | |- ( A e. RR -> ( ( exp ` A ) - ( exp ` -u A ) ) e. CC ) |
| 28 | 23 25 | readdcld | |- ( A e. RR -> ( ( exp ` A ) + ( exp ` -u A ) ) e. RR ) |
| 29 | 28 | recnd | |- ( A e. RR -> ( ( exp ` A ) + ( exp ` -u A ) ) e. CC ) |
| 30 | 2cnd | |- ( A e. RR -> 2 e. CC ) |
|
| 31 | 20 6 | eqnetrrd | |- ( A e. RR -> ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) =/= 0 ) |
| 32 | 2ne0 | |- 2 =/= 0 |
|
| 33 | 32 | a1i | |- ( A e. RR -> 2 =/= 0 ) |
| 34 | 29 30 33 | divne0bd | |- ( A e. RR -> ( ( ( exp ` A ) + ( exp ` -u A ) ) =/= 0 <-> ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) =/= 0 ) ) |
| 35 | 31 34 | mpbird | |- ( A e. RR -> ( ( exp ` A ) + ( exp ` -u A ) ) =/= 0 ) |
| 36 | 27 29 30 35 33 | divcan7d | |- ( A e. RR -> ( ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) / ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) = ( ( ( exp ` A ) - ( exp ` -u A ) ) / ( ( exp ` A ) + ( exp ` -u A ) ) ) ) |
| 37 | 22 36 | eqtrd | |- ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) = ( ( ( exp ` A ) - ( exp ` -u A ) ) / ( ( exp ` A ) + ( exp ` -u A ) ) ) ) |
| 38 | 24 | rpefcld | |- ( A e. RR -> ( exp ` -u A ) e. RR+ ) |
| 39 | 23 38 | ltsubrpd | |- ( A e. RR -> ( ( exp ` A ) - ( exp ` -u A ) ) < ( exp ` A ) ) |
| 40 | 23 38 | ltaddrpd | |- ( A e. RR -> ( exp ` A ) < ( ( exp ` A ) + ( exp ` -u A ) ) ) |
| 41 | 26 23 28 39 40 | lttrd | |- ( A e. RR -> ( ( exp ` A ) - ( exp ` -u A ) ) < ( ( exp ` A ) + ( exp ` -u A ) ) ) |
| 42 | 29 | mulridd | |- ( A e. RR -> ( ( ( exp ` A ) + ( exp ` -u A ) ) x. 1 ) = ( ( exp ` A ) + ( exp ` -u A ) ) ) |
| 43 | 41 42 | breqtrrd | |- ( A e. RR -> ( ( exp ` A ) - ( exp ` -u A ) ) < ( ( ( exp ` A ) + ( exp ` -u A ) ) x. 1 ) ) |
| 44 | 1red | |- ( A e. RR -> 1 e. RR ) |
|
| 45 | efgt0 | |- ( A e. RR -> 0 < ( exp ` A ) ) |
|
| 46 | efgt0 | |- ( -u A e. RR -> 0 < ( exp ` -u A ) ) |
|
| 47 | 24 46 | syl | |- ( A e. RR -> 0 < ( exp ` -u A ) ) |
| 48 | 23 25 45 47 | addgt0d | |- ( A e. RR -> 0 < ( ( exp ` A ) + ( exp ` -u A ) ) ) |
| 49 | ltdivmul | |- ( ( ( ( exp ` A ) - ( exp ` -u A ) ) e. RR /\ 1 e. RR /\ ( ( ( exp ` A ) + ( exp ` -u A ) ) e. RR /\ 0 < ( ( exp ` A ) + ( exp ` -u A ) ) ) ) -> ( ( ( ( exp ` A ) - ( exp ` -u A ) ) / ( ( exp ` A ) + ( exp ` -u A ) ) ) < 1 <-> ( ( exp ` A ) - ( exp ` -u A ) ) < ( ( ( exp ` A ) + ( exp ` -u A ) ) x. 1 ) ) ) |
|
| 50 | 26 44 28 48 49 | syl112anc | |- ( A e. RR -> ( ( ( ( exp ` A ) - ( exp ` -u A ) ) / ( ( exp ` A ) + ( exp ` -u A ) ) ) < 1 <-> ( ( exp ` A ) - ( exp ` -u A ) ) < ( ( ( exp ` A ) + ( exp ` -u A ) ) x. 1 ) ) ) |
| 51 | 43 50 | mpbird | |- ( A e. RR -> ( ( ( exp ` A ) - ( exp ` -u A ) ) / ( ( exp ` A ) + ( exp ` -u A ) ) ) < 1 ) |
| 52 | 37 51 | eqbrtrd | |- ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) < 1 ) |