This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the hyperbolic sine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sinhval | |- ( A e. CC -> ( ( sin ` ( _i x. A ) ) / _i ) = ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixi | |- ( _i x. _i ) = -u 1 |
|
| 2 | 1 | oveq1i | |- ( ( _i x. _i ) x. A ) = ( -u 1 x. A ) |
| 3 | ax-icn | |- _i e. CC |
|
| 4 | mulass | |- ( ( _i e. CC /\ _i e. CC /\ A e. CC ) -> ( ( _i x. _i ) x. A ) = ( _i x. ( _i x. A ) ) ) |
|
| 5 | 3 3 4 | mp3an12 | |- ( A e. CC -> ( ( _i x. _i ) x. A ) = ( _i x. ( _i x. A ) ) ) |
| 6 | mulm1 | |- ( A e. CC -> ( -u 1 x. A ) = -u A ) |
|
| 7 | 2 5 6 | 3eqtr3a | |- ( A e. CC -> ( _i x. ( _i x. A ) ) = -u A ) |
| 8 | 7 | fveq2d | |- ( A e. CC -> ( exp ` ( _i x. ( _i x. A ) ) ) = ( exp ` -u A ) ) |
| 9 | 3 3 | mulneg1i | |- ( -u _i x. _i ) = -u ( _i x. _i ) |
| 10 | 1 | negeqi | |- -u ( _i x. _i ) = -u -u 1 |
| 11 | negneg1e1 | |- -u -u 1 = 1 |
|
| 12 | 10 11 | eqtri | |- -u ( _i x. _i ) = 1 |
| 13 | 9 12 | eqtri | |- ( -u _i x. _i ) = 1 |
| 14 | 13 | oveq1i | |- ( ( -u _i x. _i ) x. A ) = ( 1 x. A ) |
| 15 | negicn | |- -u _i e. CC |
|
| 16 | mulass | |- ( ( -u _i e. CC /\ _i e. CC /\ A e. CC ) -> ( ( -u _i x. _i ) x. A ) = ( -u _i x. ( _i x. A ) ) ) |
|
| 17 | 15 3 16 | mp3an12 | |- ( A e. CC -> ( ( -u _i x. _i ) x. A ) = ( -u _i x. ( _i x. A ) ) ) |
| 18 | mullid | |- ( A e. CC -> ( 1 x. A ) = A ) |
|
| 19 | 14 17 18 | 3eqtr3a | |- ( A e. CC -> ( -u _i x. ( _i x. A ) ) = A ) |
| 20 | 19 | fveq2d | |- ( A e. CC -> ( exp ` ( -u _i x. ( _i x. A ) ) ) = ( exp ` A ) ) |
| 21 | 8 20 | oveq12d | |- ( A e. CC -> ( ( exp ` ( _i x. ( _i x. A ) ) ) - ( exp ` ( -u _i x. ( _i x. A ) ) ) ) = ( ( exp ` -u A ) - ( exp ` A ) ) ) |
| 22 | 21 | oveq1d | |- ( A e. CC -> ( ( ( exp ` ( _i x. ( _i x. A ) ) ) - ( exp ` ( -u _i x. ( _i x. A ) ) ) ) / ( 2 x. _i ) ) = ( ( ( exp ` -u A ) - ( exp ` A ) ) / ( 2 x. _i ) ) ) |
| 23 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 24 | 3 23 | mpan | |- ( A e. CC -> ( _i x. A ) e. CC ) |
| 25 | sinval | |- ( ( _i x. A ) e. CC -> ( sin ` ( _i x. A ) ) = ( ( ( exp ` ( _i x. ( _i x. A ) ) ) - ( exp ` ( -u _i x. ( _i x. A ) ) ) ) / ( 2 x. _i ) ) ) |
|
| 26 | 24 25 | syl | |- ( A e. CC -> ( sin ` ( _i x. A ) ) = ( ( ( exp ` ( _i x. ( _i x. A ) ) ) - ( exp ` ( -u _i x. ( _i x. A ) ) ) ) / ( 2 x. _i ) ) ) |
| 27 | irec | |- ( 1 / _i ) = -u _i |
|
| 28 | 27 | negeqi | |- -u ( 1 / _i ) = -u -u _i |
| 29 | 3 | negnegi | |- -u -u _i = _i |
| 30 | 28 29 | eqtri | |- -u ( 1 / _i ) = _i |
| 31 | 30 | oveq1i | |- ( -u ( 1 / _i ) x. ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) = ( _i x. ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) |
| 32 | ine0 | |- _i =/= 0 |
|
| 33 | 3 32 | reccli | |- ( 1 / _i ) e. CC |
| 34 | efcl | |- ( A e. CC -> ( exp ` A ) e. CC ) |
|
| 35 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 36 | efcl | |- ( -u A e. CC -> ( exp ` -u A ) e. CC ) |
|
| 37 | 35 36 | syl | |- ( A e. CC -> ( exp ` -u A ) e. CC ) |
| 38 | 34 37 | subcld | |- ( A e. CC -> ( ( exp ` A ) - ( exp ` -u A ) ) e. CC ) |
| 39 | 38 | halfcld | |- ( A e. CC -> ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) e. CC ) |
| 40 | mulneg12 | |- ( ( ( 1 / _i ) e. CC /\ ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) e. CC ) -> ( -u ( 1 / _i ) x. ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) = ( ( 1 / _i ) x. -u ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) ) |
|
| 41 | 33 39 40 | sylancr | |- ( A e. CC -> ( -u ( 1 / _i ) x. ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) = ( ( 1 / _i ) x. -u ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) ) |
| 42 | 2cnd | |- ( A e. CC -> 2 e. CC ) |
|
| 43 | 2ne0 | |- 2 =/= 0 |
|
| 44 | 43 | a1i | |- ( A e. CC -> 2 =/= 0 ) |
| 45 | 38 42 44 | divnegd | |- ( A e. CC -> -u ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) = ( -u ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) |
| 46 | 34 37 | negsubdi2d | |- ( A e. CC -> -u ( ( exp ` A ) - ( exp ` -u A ) ) = ( ( exp ` -u A ) - ( exp ` A ) ) ) |
| 47 | 46 | oveq1d | |- ( A e. CC -> ( -u ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) = ( ( ( exp ` -u A ) - ( exp ` A ) ) / 2 ) ) |
| 48 | 45 47 | eqtrd | |- ( A e. CC -> -u ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) = ( ( ( exp ` -u A ) - ( exp ` A ) ) / 2 ) ) |
| 49 | 48 | oveq2d | |- ( A e. CC -> ( ( 1 / _i ) x. -u ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) = ( ( 1 / _i ) x. ( ( ( exp ` -u A ) - ( exp ` A ) ) / 2 ) ) ) |
| 50 | 37 34 | subcld | |- ( A e. CC -> ( ( exp ` -u A ) - ( exp ` A ) ) e. CC ) |
| 51 | 50 | halfcld | |- ( A e. CC -> ( ( ( exp ` -u A ) - ( exp ` A ) ) / 2 ) e. CC ) |
| 52 | 3 | a1i | |- ( A e. CC -> _i e. CC ) |
| 53 | 32 | a1i | |- ( A e. CC -> _i =/= 0 ) |
| 54 | 51 52 53 | divrec2d | |- ( A e. CC -> ( ( ( ( exp ` -u A ) - ( exp ` A ) ) / 2 ) / _i ) = ( ( 1 / _i ) x. ( ( ( exp ` -u A ) - ( exp ` A ) ) / 2 ) ) ) |
| 55 | 50 42 52 44 53 | divdiv1d | |- ( A e. CC -> ( ( ( ( exp ` -u A ) - ( exp ` A ) ) / 2 ) / _i ) = ( ( ( exp ` -u A ) - ( exp ` A ) ) / ( 2 x. _i ) ) ) |
| 56 | 49 54 55 | 3eqtr2d | |- ( A e. CC -> ( ( 1 / _i ) x. -u ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) = ( ( ( exp ` -u A ) - ( exp ` A ) ) / ( 2 x. _i ) ) ) |
| 57 | 41 56 | eqtrd | |- ( A e. CC -> ( -u ( 1 / _i ) x. ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) = ( ( ( exp ` -u A ) - ( exp ` A ) ) / ( 2 x. _i ) ) ) |
| 58 | 31 57 | eqtr3id | |- ( A e. CC -> ( _i x. ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) = ( ( ( exp ` -u A ) - ( exp ` A ) ) / ( 2 x. _i ) ) ) |
| 59 | 22 26 58 | 3eqtr4d | |- ( A e. CC -> ( sin ` ( _i x. A ) ) = ( _i x. ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) ) |
| 60 | 59 | oveq1d | |- ( A e. CC -> ( ( sin ` ( _i x. A ) ) / _i ) = ( ( _i x. ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) / _i ) ) |
| 61 | 39 52 53 | divcan3d | |- ( A e. CC -> ( ( _i x. ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) / _i ) = ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) |
| 62 | 60 61 | eqtrd | |- ( A e. CC -> ( ( sin ` ( _i x. A ) ) / _i ) = ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) |