This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the hyperbolic cosine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coshval | |- ( A e. CC -> ( cos ` ( _i x. A ) ) = ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | |- _i e. CC |
|
| 2 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 3 | 1 2 | mpan | |- ( A e. CC -> ( _i x. A ) e. CC ) |
| 4 | cosval | |- ( ( _i x. A ) e. CC -> ( cos ` ( _i x. A ) ) = ( ( ( exp ` ( _i x. ( _i x. A ) ) ) + ( exp ` ( -u _i x. ( _i x. A ) ) ) ) / 2 ) ) |
|
| 5 | 3 4 | syl | |- ( A e. CC -> ( cos ` ( _i x. A ) ) = ( ( ( exp ` ( _i x. ( _i x. A ) ) ) + ( exp ` ( -u _i x. ( _i x. A ) ) ) ) / 2 ) ) |
| 6 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 7 | efcl | |- ( -u A e. CC -> ( exp ` -u A ) e. CC ) |
|
| 8 | 6 7 | syl | |- ( A e. CC -> ( exp ` -u A ) e. CC ) |
| 9 | efcl | |- ( A e. CC -> ( exp ` A ) e. CC ) |
|
| 10 | ixi | |- ( _i x. _i ) = -u 1 |
|
| 11 | 10 | oveq1i | |- ( ( _i x. _i ) x. A ) = ( -u 1 x. A ) |
| 12 | mulass | |- ( ( _i e. CC /\ _i e. CC /\ A e. CC ) -> ( ( _i x. _i ) x. A ) = ( _i x. ( _i x. A ) ) ) |
|
| 13 | 1 1 12 | mp3an12 | |- ( A e. CC -> ( ( _i x. _i ) x. A ) = ( _i x. ( _i x. A ) ) ) |
| 14 | mulm1 | |- ( A e. CC -> ( -u 1 x. A ) = -u A ) |
|
| 15 | 11 13 14 | 3eqtr3a | |- ( A e. CC -> ( _i x. ( _i x. A ) ) = -u A ) |
| 16 | 15 | fveq2d | |- ( A e. CC -> ( exp ` ( _i x. ( _i x. A ) ) ) = ( exp ` -u A ) ) |
| 17 | 1 1 | mulneg1i | |- ( -u _i x. _i ) = -u ( _i x. _i ) |
| 18 | 10 | negeqi | |- -u ( _i x. _i ) = -u -u 1 |
| 19 | negneg1e1 | |- -u -u 1 = 1 |
|
| 20 | 17 18 19 | 3eqtri | |- ( -u _i x. _i ) = 1 |
| 21 | 20 | oveq1i | |- ( ( -u _i x. _i ) x. A ) = ( 1 x. A ) |
| 22 | negicn | |- -u _i e. CC |
|
| 23 | mulass | |- ( ( -u _i e. CC /\ _i e. CC /\ A e. CC ) -> ( ( -u _i x. _i ) x. A ) = ( -u _i x. ( _i x. A ) ) ) |
|
| 24 | 22 1 23 | mp3an12 | |- ( A e. CC -> ( ( -u _i x. _i ) x. A ) = ( -u _i x. ( _i x. A ) ) ) |
| 25 | mullid | |- ( A e. CC -> ( 1 x. A ) = A ) |
|
| 26 | 21 24 25 | 3eqtr3a | |- ( A e. CC -> ( -u _i x. ( _i x. A ) ) = A ) |
| 27 | 26 | fveq2d | |- ( A e. CC -> ( exp ` ( -u _i x. ( _i x. A ) ) ) = ( exp ` A ) ) |
| 28 | 16 27 | oveq12d | |- ( A e. CC -> ( ( exp ` ( _i x. ( _i x. A ) ) ) + ( exp ` ( -u _i x. ( _i x. A ) ) ) ) = ( ( exp ` -u A ) + ( exp ` A ) ) ) |
| 29 | 8 9 28 | comraddd | |- ( A e. CC -> ( ( exp ` ( _i x. ( _i x. A ) ) ) + ( exp ` ( -u _i x. ( _i x. A ) ) ) ) = ( ( exp ` A ) + ( exp ` -u A ) ) ) |
| 30 | 29 | oveq1d | |- ( A e. CC -> ( ( ( exp ` ( _i x. ( _i x. A ) ) ) + ( exp ` ( -u _i x. ( _i x. A ) ) ) ) / 2 ) = ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) |
| 31 | 5 30 | eqtrd | |- ( A e. CC -> ( cos ` ( _i x. A ) ) = ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) |