This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential of a real number is greater than 0. (Contributed by Paul Chapman, 21-Aug-2007) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efgt0 | |- ( A e. RR -> 0 < ( exp ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reefcl | |- ( A e. RR -> ( exp ` A ) e. RR ) |
|
| 2 | rehalfcl | |- ( A e. RR -> ( A / 2 ) e. RR ) |
|
| 3 | 2 | reefcld | |- ( A e. RR -> ( exp ` ( A / 2 ) ) e. RR ) |
| 4 | 3 | sqge0d | |- ( A e. RR -> 0 <_ ( ( exp ` ( A / 2 ) ) ^ 2 ) ) |
| 5 | 2 | recnd | |- ( A e. RR -> ( A / 2 ) e. CC ) |
| 6 | 2z | |- 2 e. ZZ |
|
| 7 | efexp | |- ( ( ( A / 2 ) e. CC /\ 2 e. ZZ ) -> ( exp ` ( 2 x. ( A / 2 ) ) ) = ( ( exp ` ( A / 2 ) ) ^ 2 ) ) |
|
| 8 | 5 6 7 | sylancl | |- ( A e. RR -> ( exp ` ( 2 x. ( A / 2 ) ) ) = ( ( exp ` ( A / 2 ) ) ^ 2 ) ) |
| 9 | recn | |- ( A e. RR -> A e. CC ) |
|
| 10 | 2cn | |- 2 e. CC |
|
| 11 | 2ne0 | |- 2 =/= 0 |
|
| 12 | divcan2 | |- ( ( A e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( 2 x. ( A / 2 ) ) = A ) |
|
| 13 | 10 11 12 | mp3an23 | |- ( A e. CC -> ( 2 x. ( A / 2 ) ) = A ) |
| 14 | 9 13 | syl | |- ( A e. RR -> ( 2 x. ( A / 2 ) ) = A ) |
| 15 | 14 | fveq2d | |- ( A e. RR -> ( exp ` ( 2 x. ( A / 2 ) ) ) = ( exp ` A ) ) |
| 16 | 8 15 | eqtr3d | |- ( A e. RR -> ( ( exp ` ( A / 2 ) ) ^ 2 ) = ( exp ` A ) ) |
| 17 | 4 16 | breqtrd | |- ( A e. RR -> 0 <_ ( exp ` A ) ) |
| 18 | efne0 | |- ( A e. CC -> ( exp ` A ) =/= 0 ) |
|
| 19 | 9 18 | syl | |- ( A e. RR -> ( exp ` A ) =/= 0 ) |
| 20 | 1 17 19 | ne0gt0d | |- ( A e. RR -> 0 < ( exp ` A ) ) |