This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Infer that a multiplier is positive from a nonnegative multiplicand and positive product. (Contributed by NM, 24-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prodgt02 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ B /\ 0 < ( A x. B ) ) ) -> 0 < A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( A e. RR -> A e. CC ) |
|
| 2 | recn | |- ( B e. RR -> B e. CC ) |
|
| 3 | mulcom | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( A x. B ) = ( B x. A ) ) |
| 5 | 4 | breq2d | |- ( ( A e. RR /\ B e. RR ) -> ( 0 < ( A x. B ) <-> 0 < ( B x. A ) ) ) |
| 6 | 5 | biimpd | |- ( ( A e. RR /\ B e. RR ) -> ( 0 < ( A x. B ) -> 0 < ( B x. A ) ) ) |
| 7 | prodgt0 | |- ( ( ( B e. RR /\ A e. RR ) /\ ( 0 <_ B /\ 0 < ( B x. A ) ) ) -> 0 < A ) |
|
| 8 | 7 | ex | |- ( ( B e. RR /\ A e. RR ) -> ( ( 0 <_ B /\ 0 < ( B x. A ) ) -> 0 < A ) ) |
| 9 | 8 | ancoms | |- ( ( A e. RR /\ B e. RR ) -> ( ( 0 <_ B /\ 0 < ( B x. A ) ) -> 0 < A ) ) |
| 10 | 6 9 | sylan2d | |- ( ( A e. RR /\ B e. RR ) -> ( ( 0 <_ B /\ 0 < ( A x. B ) ) -> 0 < A ) ) |
| 11 | 10 | imp | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ B /\ 0 < ( A x. B ) ) ) -> 0 < A ) |