This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Auxiliary theorem for applications of supcvg . Hypothesis for several supremum theorems. (Contributed by NM, 8-Feb-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infcvg.1 | |- R = { x | E. y e. X x = -u A } |
|
| infcvg.2 | |- ( y e. X -> A e. RR ) |
||
| infcvg.3 | |- Z e. X |
||
| infcvg.4 | |- E. z e. RR A. w e. R w <_ z |
||
| Assertion | infcvgaux1i | |- ( R C_ RR /\ R =/= (/) /\ E. z e. RR A. w e. R w <_ z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infcvg.1 | |- R = { x | E. y e. X x = -u A } |
|
| 2 | infcvg.2 | |- ( y e. X -> A e. RR ) |
|
| 3 | infcvg.3 | |- Z e. X |
|
| 4 | infcvg.4 | |- E. z e. RR A. w e. R w <_ z |
|
| 5 | 2 | renegcld | |- ( y e. X -> -u A e. RR ) |
| 6 | eleq1 | |- ( x = -u A -> ( x e. RR <-> -u A e. RR ) ) |
|
| 7 | 5 6 | syl5ibrcom | |- ( y e. X -> ( x = -u A -> x e. RR ) ) |
| 8 | 7 | rexlimiv | |- ( E. y e. X x = -u A -> x e. RR ) |
| 9 | 8 | abssi | |- { x | E. y e. X x = -u A } C_ RR |
| 10 | 1 9 | eqsstri | |- R C_ RR |
| 11 | eqid | |- -u [_ Z / y ]_ A = -u [_ Z / y ]_ A |
|
| 12 | 11 | nfth | |- F/ y -u [_ Z / y ]_ A = -u [_ Z / y ]_ A |
| 13 | csbeq1a | |- ( y = Z -> A = [_ Z / y ]_ A ) |
|
| 14 | 13 | negeqd | |- ( y = Z -> -u A = -u [_ Z / y ]_ A ) |
| 15 | 14 | eqeq2d | |- ( y = Z -> ( -u [_ Z / y ]_ A = -u A <-> -u [_ Z / y ]_ A = -u [_ Z / y ]_ A ) ) |
| 16 | 12 15 | rspce | |- ( ( Z e. X /\ -u [_ Z / y ]_ A = -u [_ Z / y ]_ A ) -> E. y e. X -u [_ Z / y ]_ A = -u A ) |
| 17 | 3 11 16 | mp2an | |- E. y e. X -u [_ Z / y ]_ A = -u A |
| 18 | negex | |- -u [_ Z / y ]_ A e. _V |
|
| 19 | nfcsb1v | |- F/_ y [_ Z / y ]_ A |
|
| 20 | 19 | nfneg | |- F/_ y -u [_ Z / y ]_ A |
| 21 | 20 | nfeq2 | |- F/ y x = -u [_ Z / y ]_ A |
| 22 | eqeq1 | |- ( x = -u [_ Z / y ]_ A -> ( x = -u A <-> -u [_ Z / y ]_ A = -u A ) ) |
|
| 23 | 21 22 | rexbid | |- ( x = -u [_ Z / y ]_ A -> ( E. y e. X x = -u A <-> E. y e. X -u [_ Z / y ]_ A = -u A ) ) |
| 24 | 18 23 | elab | |- ( -u [_ Z / y ]_ A e. { x | E. y e. X x = -u A } <-> E. y e. X -u [_ Z / y ]_ A = -u A ) |
| 25 | 17 24 | mpbir | |- -u [_ Z / y ]_ A e. { x | E. y e. X x = -u A } |
| 26 | 25 1 | eleqtrri | |- -u [_ Z / y ]_ A e. R |
| 27 | 26 | ne0ii | |- R =/= (/) |
| 28 | 10 27 4 | 3pm3.2i | |- ( R C_ RR /\ R =/= (/) /\ E. z e. RR A. w e. R w <_ z ) |