This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constant sequence converges to its value. (Contributed by NM, 6-Feb-2008) (Revised by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climconst2.1 | |- ( ZZ>= ` M ) C_ Z |
|
| climconst2.2 | |- Z e. _V |
||
| Assertion | climconst2 | |- ( ( A e. CC /\ M e. ZZ ) -> ( Z X. { A } ) ~~> A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climconst2.1 | |- ( ZZ>= ` M ) C_ Z |
|
| 2 | climconst2.2 | |- Z e. _V |
|
| 3 | eqid | |- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
|
| 4 | simpr | |- ( ( A e. CC /\ M e. ZZ ) -> M e. ZZ ) |
|
| 5 | snex | |- { A } e. _V |
|
| 6 | 2 5 | xpex | |- ( Z X. { A } ) e. _V |
| 7 | 6 | a1i | |- ( ( A e. CC /\ M e. ZZ ) -> ( Z X. { A } ) e. _V ) |
| 8 | simpl | |- ( ( A e. CC /\ M e. ZZ ) -> A e. CC ) |
|
| 9 | 1 | sseli | |- ( k e. ( ZZ>= ` M ) -> k e. Z ) |
| 10 | fvconst2g | |- ( ( A e. CC /\ k e. Z ) -> ( ( Z X. { A } ) ` k ) = A ) |
|
| 11 | 8 9 10 | syl2an | |- ( ( ( A e. CC /\ M e. ZZ ) /\ k e. ( ZZ>= ` M ) ) -> ( ( Z X. { A } ) ` k ) = A ) |
| 12 | 3 4 7 8 11 | climconst | |- ( ( A e. CC /\ M e. ZZ ) -> ( Z X. { A } ) ~~> A ) |