This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for summo . (Contributed by Mario Carneiro, 3-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | summo.1 | |- F = ( k e. ZZ |-> if ( k e. A , B , 0 ) ) |
|
| summo.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| summo.3 | |- G = ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) |
||
| Assertion | summolem2 | |- ( ( ph /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) -> x = y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | summo.1 | |- F = ( k e. ZZ |-> if ( k e. A , B , 0 ) ) |
|
| 2 | summo.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 3 | summo.3 | |- G = ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) |
|
| 4 | fveq2 | |- ( m = j -> ( ZZ>= ` m ) = ( ZZ>= ` j ) ) |
|
| 5 | 4 | sseq2d | |- ( m = j -> ( A C_ ( ZZ>= ` m ) <-> A C_ ( ZZ>= ` j ) ) ) |
| 6 | seqeq1 | |- ( m = j -> seq m ( + , F ) = seq j ( + , F ) ) |
|
| 7 | 6 | breq1d | |- ( m = j -> ( seq m ( + , F ) ~~> x <-> seq j ( + , F ) ~~> x ) ) |
| 8 | 5 7 | anbi12d | |- ( m = j -> ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) <-> ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) ) |
| 9 | 8 | cbvrexvw | |- ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) <-> E. j e. ZZ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) |
| 10 | simplrr | |- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> seq j ( + , F ) ~~> x ) |
|
| 11 | simplrl | |- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> A C_ ( ZZ>= ` j ) ) |
|
| 12 | uzssz | |- ( ZZ>= ` j ) C_ ZZ |
|
| 13 | zssre | |- ZZ C_ RR |
|
| 14 | 12 13 | sstri | |- ( ZZ>= ` j ) C_ RR |
| 15 | 11 14 | sstrdi | |- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> A C_ RR ) |
| 16 | ltso | |- < Or RR |
|
| 17 | soss | |- ( A C_ RR -> ( < Or RR -> < Or A ) ) |
|
| 18 | 15 16 17 | mpisyl | |- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> < Or A ) |
| 19 | fzfi | |- ( 1 ... m ) e. Fin |
|
| 20 | ovex | |- ( 1 ... m ) e. _V |
|
| 21 | 20 | f1oen | |- ( f : ( 1 ... m ) -1-1-onto-> A -> ( 1 ... m ) ~~ A ) |
| 22 | 21 | ad2antll | |- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> ( 1 ... m ) ~~ A ) |
| 23 | 22 | ensymd | |- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> A ~~ ( 1 ... m ) ) |
| 24 | enfii | |- ( ( ( 1 ... m ) e. Fin /\ A ~~ ( 1 ... m ) ) -> A e. Fin ) |
|
| 25 | 19 23 24 | sylancr | |- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> A e. Fin ) |
| 26 | fz1iso | |- ( ( < Or A /\ A e. Fin ) -> E. g g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
|
| 27 | 18 25 26 | syl2anc | |- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> E. g g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
| 28 | 2 | ad5ant15 | |- ( ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) /\ k e. A ) -> B e. CC ) |
| 29 | eqid | |- ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) = ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) |
|
| 30 | simprll | |- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> m e. NN ) |
|
| 31 | simpllr | |- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> j e. ZZ ) |
|
| 32 | simplrl | |- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> A C_ ( ZZ>= ` j ) ) |
|
| 33 | simprlr | |- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> f : ( 1 ... m ) -1-1-onto-> A ) |
|
| 34 | simprr | |- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
|
| 35 | 1 28 3 29 30 31 32 33 34 | summolem2a | |- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> seq j ( + , F ) ~~> ( seq 1 ( + , G ) ` m ) ) |
| 36 | 35 | expr | |- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> ( g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) -> seq j ( + , F ) ~~> ( seq 1 ( + , G ) ` m ) ) ) |
| 37 | 36 | exlimdv | |- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> ( E. g g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) -> seq j ( + , F ) ~~> ( seq 1 ( + , G ) ` m ) ) ) |
| 38 | 27 37 | mpd | |- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> seq j ( + , F ) ~~> ( seq 1 ( + , G ) ` m ) ) |
| 39 | climuni | |- ( ( seq j ( + , F ) ~~> x /\ seq j ( + , F ) ~~> ( seq 1 ( + , G ) ` m ) ) -> x = ( seq 1 ( + , G ) ` m ) ) |
|
| 40 | 10 38 39 | syl2anc | |- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> x = ( seq 1 ( + , G ) ` m ) ) |
| 41 | 40 | anassrs | |- ( ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> x = ( seq 1 ( + , G ) ` m ) ) |
| 42 | eqeq2 | |- ( y = ( seq 1 ( + , G ) ` m ) -> ( x = y <-> x = ( seq 1 ( + , G ) ` m ) ) ) |
|
| 43 | 41 42 | syl5ibrcom | |- ( ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> ( y = ( seq 1 ( + , G ) ` m ) -> x = y ) ) |
| 44 | 43 | expimpd | |- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ m e. NN ) -> ( ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) -> x = y ) ) |
| 45 | 44 | exlimdv | |- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ m e. NN ) -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) -> x = y ) ) |
| 46 | 45 | rexlimdva | |- ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) -> x = y ) ) |
| 47 | 46 | r19.29an | |- ( ( ph /\ E. j e. ZZ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) -> x = y ) ) |
| 48 | 9 47 | sylan2b | |- ( ( ph /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) -> x = y ) ) |