This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for summo . (Contributed by Mario Carneiro, 3-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | summo.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) | |
| summo.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| summo.3 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) | ||
| Assertion | summolem2 | ⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | summo.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) | |
| 2 | summo.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 3 | summo.3 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) | |
| 4 | fveq2 | ⊢ ( 𝑚 = 𝑗 → ( ℤ≥ ‘ 𝑚 ) = ( ℤ≥ ‘ 𝑗 ) ) | |
| 5 | 4 | sseq2d | ⊢ ( 𝑚 = 𝑗 → ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ↔ 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ) ) |
| 6 | seqeq1 | ⊢ ( 𝑚 = 𝑗 → seq 𝑚 ( + , 𝐹 ) = seq 𝑗 ( + , 𝐹 ) ) | |
| 7 | 6 | breq1d | ⊢ ( 𝑚 = 𝑗 → ( seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ↔ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) |
| 8 | 5 7 | anbi12d | ⊢ ( 𝑚 = 𝑗 → ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ↔ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ) |
| 9 | 8 | cbvrexvw | ⊢ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) |
| 10 | simplrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) | |
| 11 | simplrl | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ) | |
| 12 | uzssz | ⊢ ( ℤ≥ ‘ 𝑗 ) ⊆ ℤ | |
| 13 | zssre | ⊢ ℤ ⊆ ℝ | |
| 14 | 12 13 | sstri | ⊢ ( ℤ≥ ‘ 𝑗 ) ⊆ ℝ |
| 15 | 11 14 | sstrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → 𝐴 ⊆ ℝ ) |
| 16 | ltso | ⊢ < Or ℝ | |
| 17 | soss | ⊢ ( 𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴 ) ) | |
| 18 | 15 16 17 | mpisyl | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → < Or 𝐴 ) |
| 19 | fzfi | ⊢ ( 1 ... 𝑚 ) ∈ Fin | |
| 20 | ovex | ⊢ ( 1 ... 𝑚 ) ∈ V | |
| 21 | 20 | f1oen | ⊢ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 → ( 1 ... 𝑚 ) ≈ 𝐴 ) |
| 22 | 21 | ad2antll | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → ( 1 ... 𝑚 ) ≈ 𝐴 ) |
| 23 | 22 | ensymd | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → 𝐴 ≈ ( 1 ... 𝑚 ) ) |
| 24 | enfii | ⊢ ( ( ( 1 ... 𝑚 ) ∈ Fin ∧ 𝐴 ≈ ( 1 ... 𝑚 ) ) → 𝐴 ∈ Fin ) | |
| 25 | 19 23 24 | sylancr | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → 𝐴 ∈ Fin ) |
| 26 | fz1iso | ⊢ ( ( < Or 𝐴 ∧ 𝐴 ∈ Fin ) → ∃ 𝑔 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) | |
| 27 | 18 25 26 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → ∃ 𝑔 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
| 28 | 2 | ad5ant15 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 29 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) = ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) | |
| 30 | simprll | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝑚 ∈ ℕ ) | |
| 31 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝑗 ∈ ℤ ) | |
| 32 | simplrl | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ) | |
| 33 | simprlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) | |
| 34 | simprr | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) | |
| 35 | 1 28 3 29 30 31 32 33 34 | summolem2a | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → seq 𝑗 ( + , 𝐹 ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) |
| 36 | 35 | expr | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → ( 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) → seq 𝑗 ( + , 𝐹 ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) |
| 37 | 36 | exlimdv | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → ( ∃ 𝑔 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) → seq 𝑗 ( + , 𝐹 ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) |
| 38 | 27 37 | mpd | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → seq 𝑗 ( + , 𝐹 ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) |
| 39 | climuni | ⊢ ( ( seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ∧ seq 𝑗 ( + , 𝐹 ) ⇝ ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) | |
| 40 | 10 38 39 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) ) → 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) |
| 41 | 40 | anassrs | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) |
| 42 | eqeq2 | ⊢ ( 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) → ( 𝑥 = 𝑦 ↔ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) | |
| 43 | 41 42 | syl5ibrcom | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → ( 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) → 𝑥 = 𝑦 ) ) |
| 44 | 43 | expimpd | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑦 ) ) |
| 45 | 44 | exlimdv | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) ∧ 𝑚 ∈ ℕ ) → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑦 ) ) |
| 46 | 45 | rexlimdva | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑦 ) ) |
| 47 | 46 | r19.29an | ⊢ ( ( 𝜑 ∧ ∃ 𝑗 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑗 ) ∧ seq 𝑗 ( + , 𝐹 ) ⇝ 𝑥 ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑦 ) ) |
| 48 | 9 47 | sylan2b | ⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑦 ) ) |