This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sum has at most one limit. (Contributed by Mario Carneiro, 3-Apr-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | summo.1 | |- F = ( k e. ZZ |-> if ( k e. A , B , 0 ) ) |
|
| summo.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| summo.3 | |- G = ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) |
||
| Assertion | summo | |- ( ph -> E* x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | summo.1 | |- F = ( k e. ZZ |-> if ( k e. A , B , 0 ) ) |
|
| 2 | summo.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 3 | summo.3 | |- G = ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) |
|
| 4 | fveq2 | |- ( m = n -> ( ZZ>= ` m ) = ( ZZ>= ` n ) ) |
|
| 5 | 4 | sseq2d | |- ( m = n -> ( A C_ ( ZZ>= ` m ) <-> A C_ ( ZZ>= ` n ) ) ) |
| 6 | seqeq1 | |- ( m = n -> seq m ( + , F ) = seq n ( + , F ) ) |
|
| 7 | 6 | breq1d | |- ( m = n -> ( seq m ( + , F ) ~~> y <-> seq n ( + , F ) ~~> y ) ) |
| 8 | 5 7 | anbi12d | |- ( m = n -> ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) <-> ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) ) |
| 9 | 8 | cbvrexvw | |- ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) <-> E. n e. ZZ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) |
| 10 | reeanv | |- ( E. m e. ZZ E. n e. ZZ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) <-> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ E. n e. ZZ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) ) |
|
| 11 | simprlr | |- ( ( ( ph /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) ) -> seq m ( + , F ) ~~> x ) |
|
| 12 | 2 | ad4ant14 | |- ( ( ( ( ph /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) ) /\ k e. A ) -> B e. CC ) |
| 13 | simplrl | |- ( ( ( ph /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) ) -> m e. ZZ ) |
|
| 14 | simplrr | |- ( ( ( ph /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) ) -> n e. ZZ ) |
|
| 15 | simprll | |- ( ( ( ph /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) ) -> A C_ ( ZZ>= ` m ) ) |
|
| 16 | simprrl | |- ( ( ( ph /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) ) -> A C_ ( ZZ>= ` n ) ) |
|
| 17 | 1 12 13 14 15 16 | sumrb | |- ( ( ( ph /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) ) -> ( seq m ( + , F ) ~~> x <-> seq n ( + , F ) ~~> x ) ) |
| 18 | 11 17 | mpbid | |- ( ( ( ph /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) ) -> seq n ( + , F ) ~~> x ) |
| 19 | simprrr | |- ( ( ( ph /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) ) -> seq n ( + , F ) ~~> y ) |
|
| 20 | climuni | |- ( ( seq n ( + , F ) ~~> x /\ seq n ( + , F ) ~~> y ) -> x = y ) |
|
| 21 | 18 19 20 | syl2anc | |- ( ( ( ph /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) ) -> x = y ) |
| 22 | 21 | exp31 | |- ( ph -> ( ( m e. ZZ /\ n e. ZZ ) -> ( ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) -> x = y ) ) ) |
| 23 | 22 | rexlimdvv | |- ( ph -> ( E. m e. ZZ E. n e. ZZ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) -> x = y ) ) |
| 24 | 10 23 | biimtrrid | |- ( ph -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ E. n e. ZZ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) -> x = y ) ) |
| 25 | 24 | expdimp | |- ( ( ph /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) ) -> ( E. n e. ZZ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) -> x = y ) ) |
| 26 | 9 25 | biimtrid | |- ( ( ph /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) ) -> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) -> x = y ) ) |
| 27 | 1 2 3 | summolem2 | |- ( ( ph /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) -> x = y ) ) |
| 28 | 26 27 | jaod | |- ( ( ph /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) ) -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) ) -> x = y ) ) |
| 29 | 1 2 3 | summolem2 | |- ( ( ph /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) -> y = x ) ) |
| 30 | equcom | |- ( y = x <-> x = y ) |
|
| 31 | 29 30 | imbitrdi | |- ( ( ph /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) -> x = y ) ) |
| 32 | 31 | impancom | |- ( ( ph /\ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) ) -> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) -> x = y ) ) |
| 33 | oveq2 | |- ( m = n -> ( 1 ... m ) = ( 1 ... n ) ) |
|
| 34 | 33 | f1oeq2d | |- ( m = n -> ( f : ( 1 ... m ) -1-1-onto-> A <-> f : ( 1 ... n ) -1-1-onto-> A ) ) |
| 35 | fveq2 | |- ( m = n -> ( seq 1 ( + , G ) ` m ) = ( seq 1 ( + , G ) ` n ) ) |
|
| 36 | 35 | eqeq2d | |- ( m = n -> ( y = ( seq 1 ( + , G ) ` m ) <-> y = ( seq 1 ( + , G ) ` n ) ) ) |
| 37 | 34 36 | anbi12d | |- ( m = n -> ( ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) <-> ( f : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` n ) ) ) ) |
| 38 | 37 | exbidv | |- ( m = n -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) <-> E. f ( f : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` n ) ) ) ) |
| 39 | f1oeq1 | |- ( f = g -> ( f : ( 1 ... n ) -1-1-onto-> A <-> g : ( 1 ... n ) -1-1-onto-> A ) ) |
|
| 40 | fveq1 | |- ( f = g -> ( f ` n ) = ( g ` n ) ) |
|
| 41 | 40 | csbeq1d | |- ( f = g -> [_ ( f ` n ) / k ]_ B = [_ ( g ` n ) / k ]_ B ) |
| 42 | 41 | mpteq2dv | |- ( f = g -> ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) = ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) |
| 43 | 3 42 | eqtrid | |- ( f = g -> G = ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) |
| 44 | 43 | seqeq3d | |- ( f = g -> seq 1 ( + , G ) = seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ) |
| 45 | 44 | fveq1d | |- ( f = g -> ( seq 1 ( + , G ) ` n ) = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) |
| 46 | 45 | eqeq2d | |- ( f = g -> ( y = ( seq 1 ( + , G ) ` n ) <-> y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) |
| 47 | 39 46 | anbi12d | |- ( f = g -> ( ( f : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` n ) ) <-> ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) ) |
| 48 | 47 | cbvexvw | |- ( E. f ( f : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` n ) ) <-> E. g ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) |
| 49 | 38 48 | bitrdi | |- ( m = n -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) <-> E. g ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) ) |
| 50 | 49 | cbvrexvw | |- ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) <-> E. n e. NN E. g ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) |
| 51 | reeanv | |- ( E. m e. NN E. n e. NN ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) /\ E. g ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) <-> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) /\ E. n e. NN E. g ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) ) |
|
| 52 | exdistrv | |- ( E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) /\ ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) <-> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) /\ E. g ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) ) |
|
| 53 | an4 | |- ( ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) /\ ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) <-> ( ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... n ) -1-1-onto-> A ) /\ ( x = ( seq 1 ( + , G ) ` m ) /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) ) |
|
| 54 | 2 | ad4ant14 | |- ( ( ( ( ph /\ ( m e. NN /\ n e. NN ) ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... n ) -1-1-onto-> A ) ) /\ k e. A ) -> B e. CC ) |
| 55 | fveq2 | |- ( n = j -> ( f ` n ) = ( f ` j ) ) |
|
| 56 | 55 | csbeq1d | |- ( n = j -> [_ ( f ` n ) / k ]_ B = [_ ( f ` j ) / k ]_ B ) |
| 57 | 56 | cbvmptv | |- ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) = ( j e. NN |-> [_ ( f ` j ) / k ]_ B ) |
| 58 | 3 57 | eqtri | |- G = ( j e. NN |-> [_ ( f ` j ) / k ]_ B ) |
| 59 | fveq2 | |- ( n = j -> ( g ` n ) = ( g ` j ) ) |
|
| 60 | 59 | csbeq1d | |- ( n = j -> [_ ( g ` n ) / k ]_ B = [_ ( g ` j ) / k ]_ B ) |
| 61 | 60 | cbvmptv | |- ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) = ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) |
| 62 | simplr | |- ( ( ( ph /\ ( m e. NN /\ n e. NN ) ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... n ) -1-1-onto-> A ) ) -> ( m e. NN /\ n e. NN ) ) |
|
| 63 | simprl | |- ( ( ( ph /\ ( m e. NN /\ n e. NN ) ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... n ) -1-1-onto-> A ) ) -> f : ( 1 ... m ) -1-1-onto-> A ) |
|
| 64 | simprr | |- ( ( ( ph /\ ( m e. NN /\ n e. NN ) ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... n ) -1-1-onto-> A ) ) -> g : ( 1 ... n ) -1-1-onto-> A ) |
|
| 65 | 1 54 58 61 62 63 64 | summolem3 | |- ( ( ( ph /\ ( m e. NN /\ n e. NN ) ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... n ) -1-1-onto-> A ) ) -> ( seq 1 ( + , G ) ` m ) = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) |
| 66 | eqeq12 | |- ( ( x = ( seq 1 ( + , G ) ` m ) /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) -> ( x = y <-> ( seq 1 ( + , G ) ` m ) = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) |
|
| 67 | 65 66 | syl5ibrcom | |- ( ( ( ph /\ ( m e. NN /\ n e. NN ) ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... n ) -1-1-onto-> A ) ) -> ( ( x = ( seq 1 ( + , G ) ` m ) /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) -> x = y ) ) |
| 68 | 67 | expimpd | |- ( ( ph /\ ( m e. NN /\ n e. NN ) ) -> ( ( ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... n ) -1-1-onto-> A ) /\ ( x = ( seq 1 ( + , G ) ` m ) /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) -> x = y ) ) |
| 69 | 53 68 | biimtrid | |- ( ( ph /\ ( m e. NN /\ n e. NN ) ) -> ( ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) /\ ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) -> x = y ) ) |
| 70 | 69 | exlimdvv | |- ( ( ph /\ ( m e. NN /\ n e. NN ) ) -> ( E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) /\ ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) -> x = y ) ) |
| 71 | 52 70 | biimtrrid | |- ( ( ph /\ ( m e. NN /\ n e. NN ) ) -> ( ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) /\ E. g ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) -> x = y ) ) |
| 72 | 71 | rexlimdvva | |- ( ph -> ( E. m e. NN E. n e. NN ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) /\ E. g ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) -> x = y ) ) |
| 73 | 51 72 | biimtrrid | |- ( ph -> ( ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) /\ E. n e. NN E. g ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) -> x = y ) ) |
| 74 | 73 | expdimp | |- ( ( ph /\ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) ) -> ( E. n e. NN E. g ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) -> x = y ) ) |
| 75 | 50 74 | biimtrid | |- ( ( ph /\ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) -> x = y ) ) |
| 76 | 32 75 | jaod | |- ( ( ph /\ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) ) -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) ) -> x = y ) ) |
| 77 | 28 76 | jaodan | |- ( ( ph /\ ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) ) ) -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) ) -> x = y ) ) |
| 78 | 77 | expimpd | |- ( ph -> ( ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) ) /\ ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) ) ) -> x = y ) ) |
| 79 | 78 | alrimivv | |- ( ph -> A. x A. y ( ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) ) /\ ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) ) ) -> x = y ) ) |
| 80 | breq2 | |- ( x = y -> ( seq m ( + , F ) ~~> x <-> seq m ( + , F ) ~~> y ) ) |
|
| 81 | 80 | anbi2d | |- ( x = y -> ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) <-> ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) ) ) |
| 82 | 81 | rexbidv | |- ( x = y -> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) <-> E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) ) ) |
| 83 | eqeq1 | |- ( x = y -> ( x = ( seq 1 ( + , G ) ` m ) <-> y = ( seq 1 ( + , G ) ` m ) ) ) |
|
| 84 | 83 | anbi2d | |- ( x = y -> ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) <-> ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) ) ) |
| 85 | 84 | exbidv | |- ( x = y -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) <-> E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) ) ) |
| 86 | 85 | rexbidv | |- ( x = y -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) <-> E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) ) ) |
| 87 | 82 86 | orbi12d | |- ( x = y -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) ) <-> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) ) ) ) |
| 88 | 87 | mo4 | |- ( E* x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) ) <-> A. x A. y ( ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) ) /\ ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) ) ) -> x = y ) ) |
| 89 | 79 88 | sylibr | |- ( ph -> E* x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) ) ) |